【题目】在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相同数字的概率;
(2)求取出的两个球上标号之积能被3整除的概率.
【答案】
(1)解:设从甲、乙两个盒子中各取1个球,其数字分别为x、y,
用(x,y)表示抽取结果,则所有可能的结果有16种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种结果,每种情况等可能出现.
设“取出的两个球上的标号相同”为事件A,
则A={(1,1),(2,2),(3,3),(4,4)}.
事件A由4个基本事件组成,故所求概率 .
答:取出的两个球上的标号为相同数字的概率为 .
(2)解:设“取出的两个球上标号的数字之积能被3整除”为事件B,
则B={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)}.
事件B由7个基本事件组成,故所求概率 .
答:取出的两个球上标号之积能被3整除的概率为
【解析】设从甲、乙两个盒子中各取1个球,其数字分别为x、y,用(x,y)表示抽取结果,则所有可能的结果有16种,(1)A={(1,1),(2,2),(3,3),(4,4)},代入古典概率的求解公式可求(2)设“取出的两个球上标号的数字之积能被3整除”为事件B,则B={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)},代入古典概率的求解公式可求
科目:高中数学 来源: 题型:
【题目】“丁香”和“小花”是好朋友,她们相约本周末去爬歌乐山,并约定周日早上8:00至8:30之间(假定她们在这一时间段内任一时刻等可能的到达)在歌乐山健身步道起点处会合,若“丁香”先到,则她最多等待“小花”15分钟.若“小花”先到,则她最多等待“丁香”10分钟,若在等待时间内对方到达,则她俩就一起快乐地爬山,否则超过等待时间后她们均不再等候对方而孤独爬山,则“丁香”和“小花”快乐地一起爬歌乐山的概率是(用数字作答)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写出下列命题的否定,并判断其真假:
(1)p:末位数字为9的整数能被3整除;
(2)p:有的素数是偶数;
(3)p:至少有一个实数x,使x2+1=0;
(4)p:x,y∈R,x2+y2+2x-4y+5=0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, ,曲线上的任意一点满足: .
(1)求点的轨迹方程;
(2)过点的直线与曲线交于, 两点,交轴于点,设, ,试问是否为定值?如果是定值,请求出这个定值,如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】写出下列命题的否定,并判断其真假:
(1)p:不论m取何实数,方程x2+x-m=0必有实数根;
(2)q:存在一个实数x,使得x2+x+1≤0;
(3)r:等圆的面积相等,周长相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某颜料公司生产 两种产品,其中生产每吨产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一条之内甲、乙、丙三种染料的用量分别不超过50吨,160吨和200吨,如果产品的利润为300元/吨, 产品的利润为200元/吨,则该颜料公司一天之内可获得最大利润为( )
A. 14000元 B. 16000元 C. 18000元 D. 20000元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com