精英家教网 > 高中数学 > 题目详情
6.两平行直线x+2y-1=0与2x+4y+3=0间的距离为(  )
A.$\frac{2}{5}\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{4}{5}\sqrt{5}$D.$\sqrt{5}$

分析 在一条直线上任取一点,求出这点到另一条直线的距离即为两平行线的距离.

解答 解:由直线x+2y-1=0取一点A,令y=0得到x=1,即A(1,0),
则两平行直线的距离等于A到直线2x+4y+3=0的距离d=$\frac{5}{\sqrt{4+16}}$=$\frac{\sqrt{5}}{2}$.
故选B.

点评 此题是一道基础题,要求学生理解两条平行线的距离的定义.会灵活运用点到直线的距离公式化简求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知点P(-2,-2),Q(0,-1),取一点R(2,m),使得PR+PQ最小,那么实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短轴长是长轴长的$\frac{{\sqrt{3}}}{2}$,A是椭圆M的右顶点,B、C在椭圆M上,O是坐标原点,四边形OABC为面积是3的平行四边形.
(1)求椭圆M的方程;
(2)过点(4,0)且不垂直于x轴的直线与椭圆M交于P,Q两点,点Q关于x轴的对称点为E,证明:直线PE与x轴的交点为椭圆M的右焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2
(2)log49×log278+2log122-log12$\frac{1}{3}$+eln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列选项中与函数y=x是同一函数的是(  )
A.$y=\root{3}{x^3}$B.$y={(\sqrt{x})^2}$C.$y=\sqrt{x^2}$D.$y=\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算${(\frac{8}{27})^{-\;\frac{2}{3}}}+lg25+lg4+{3^{{{log}_3}2}}$=$\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=(k-2)x2+2kx-3.
(Ⅰ)当k=4时,求f(x)在区间(-4,1)上的值域;
(Ⅱ)若函数f(x)在(0,+∞)上至少有一个零点,求实数k的取值范围;
(Ⅲ)若f(x)在区间[1,2]上单调递增,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知不等式f(x)=3$\sqrt{2}$sin $\frac{x}{4}$•cos $\frac{x}{4}$+$\sqrt{6}$cos2$\frac{x}{4}$-$\frac{\sqrt{6}}{2}$+m≤0,对于任意的-$\frac{5π}{6}$≤x≤$\frac{π}{6}$恒成立,则实数m的取值范围是(  )
A.m≥$\sqrt{3}$B.m≤$\sqrt{3}$C.m≤-$\sqrt{3}$D.-$\sqrt{3}$≤m≤$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知△ABC三个顶点坐标为A(7,8),B(10,4),C(2,-4).
(1)求BC边上的中线所在直线的方程;
(2)求BC边上的高所在直线的方程.

查看答案和解析>>

同步练习册答案