精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin +e|x1| , 有下列四个结论:
①图象关于直线x=1对称;
②f(x)的最大值是2;
③f(x)的最大值是﹣1,;
④f(x)在区间[﹣2015,2015]上有2015个零点.
其中正确的结论是(写出所有正确的结论序号).

【答案】①②④
【解析】解:对于①,∵y=sin ,关于x=1对称,y=e|x1|关于x=1对称,∴f(x)图象关于直线x=1对称,故①正确,
对于②,∵﹣1≤sin ≤1,0<e|x1|≤1,∴f(x)的最大值是2,故②正确,③不正确,
对于④,∵y=sin 的周期为T= =4,由①知,关于x=1对称,每个周期内都有两个零点,故有2015个零点,故④正确.
所以答案是:①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为yxc=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A , 过A作圆的切线,斜率为 ,求双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下判断正确的个数是( )

①相关系数值越小,变量之间的相关性越强.

②命题“存在”的否定是“不存在”.

③“”为真是“”为假的必要不充分条件.

④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是.

A. 4 B. 2 C. 3 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+4[sin(θ+ )]x﹣2,θ∈[0,2π]].
(1)若函数f(x)为偶函数,求tanθ的值;
(2)若f(x)在[﹣ ,1]上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数  上是增函数,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知7cos2α﹣sinαcosα﹣1=0,α∈( ),求cos2α和 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了70人,从女生中随机抽取了50人,男生中喜欢数学课程的占,女生中喜欢数学课程的占,得到如下列联表.

喜欢数学课程

不喜欢数学课程

合计

男生

女生

合计

(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;

(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,求抽取的学生中至少有1名是女生的概率..

附:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案