精英家教网 > 高中数学 > 题目详情
已知直线l:y=kx-1与圆C:(x-1)2+y2=1相交于P、Q两点,点M(0,b)满足MP⊥MQ.
(Ⅰ)当b=0时,求实数k的值;
(Ⅱ)当b∈(-
12
,1)
时,求实数k的取值范围;
(Ⅲ)设A、B是圆C:(x-1)2+y2=1上两点,且满足|OA|•|OB|=1,试问:是否存在一个定圆S,使直线AB恒与圆S相切.
分析:(I)当b=0时,M点即为原点,根据圆C的方程:(x-1)2+y2=1,原点(M点)落在圆上,若MP⊥MQ,则PQ为圆C:(x-1)2+y2=1直径,将圆心坐标代入直线方程,即可求出实数k的值;
(Ⅱ)根据P、Q两点在直线l:y=kx-1上,设出P,Q两点的坐标为(X1,kX1-1),(X2,kX2-1),联立方程后可以将方程看作是关于x的一元二次方程,根据韦达定理,可将MP⊥MQ转化为一个k与b的关系式,根据 b∈(-
1
2
,1)
时,即可得到实数k的取值范围.
(Ⅲ)设AB:x=ky+λ,A(x1,y1),B(x2,y2),进而根据|OA|•|OB|=1,求得y2•y1,进而把直线与圆方程联立,求得y2•y1,进而根据原点O到直线AB距离求得d,进而判断出直线AB恒与圆 S:x2+y2=
1
4
相切.
解答:解:(Ⅰ)设P(x1,y1),Q(x2,y2),
由题设条件可得x1x2+y1y2=0,将y=kx-1代入圆C:(x-1)2+y2=1得(1+k2)x2-2(1+k)x+1=0,
故有x1+x2=
2+2k
1+k2
x1x2=
1
1+k2

又y1y2=(kx1-1)(kx2-1)=k2x1x2-k(x1+x2)+1=
k2
1+k2
-
2k+2k2
1+k2
+1
=
1-2k
1+k2

1-2k
1+k2
+
1
1+k2
=0,得k=1;
(Ⅱ)设P,Q两点的坐标为(X1,kX1-1),(X2,kX2-1)
则由圆C:(x-1)2+y2=1及直线l:y=kx-1
得(k2+1)x2-2(k+1)x+1=0
则X1•X2=
1
k2+1
,X1+X2=
2(k+1)
k2+1

MP
=(X1,kX1-1-b),
MQ
=(X2,kX2-1-b)
由MP⊥MQ则
X1•X2+(kX1-1-b)•(kX2-1-b)=0
2k2+2k
k2+1
=(b+1)+
1
(b+1)

b∈(-
1
2
,1)
,∴
1
2
b+1<2,
2k2+2k
k2+1
=(b+1)+
1
(b+1)
∈[2,
5
2

解得k≥1,
故实数k的取值范围[1,+∞)
(Ⅲ)∵圆C的方程为(x-1)2+y2=1
设AB:x=ky+λ,A(x1,y1),B(x2,y2),
由|OA|•|OB|=1 x12+y12•x22+y22=1-(x1-1)2+y12•1-(x2-1)2+y22=2x1•2x2=1?x1x2=
1
4

又∵
(x-1)2+y2=1
x=ky+1
?(k2+1)x2+2(kλ-1)y+λ2=0,
x1x2=
λ2
k2+1
=
1
4
?
|λ|
k2+1
=
1
2

又原点O到直线AB距离 d=
|λ|
1+k2

d=
1
2
,即原点O到直线AB的距离恒为 d=
1
2

∴直线AB恒与圆 S:x2+y2=
1
4
相切.
点评:本题考查的知识点是直线与圆相交的性质,直线与圆的综合应用,(II)中应用的方法--“联立方程”+“设而不求”+“韦达定理”是解答直线与圆锥曲线(包括圆)的综合问题的常用方法,是解答高考压轴题的关键.属难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:y=kx+k+1,抛物线C:y2=4x,定点M(1,1).
(I)当直线l经过抛物线焦点F时,求点M关于直线l的对称点N的坐标,并判断点N是否在抛物线C上;
(II)当k(k≠0)变化且直线l与抛物线C有公共点时,设点P(a,1)关于直线l的对称点为Q(x0,y0),求x0关于k的函数关系式x0=f(k);若P与M重合时,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx+1与椭圆
x2
2
+y2=1交于M、N两点,且|MN|=
4
2
3
.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知圆M:(x+1)2+y2=8及定点N(1,0),点P是圆M上一动点,点Q为PN的中点,PM上一点G满足
GQ
NP
=0

(1)求点G的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于A、B两点,E(0,1),是否存在直线l,使得点N恰为△ABE的垂心?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx+b是椭圆C:
x24
+y2=1
的一条切线,F1,F2为左右焦点.
(1)过F1,F2作l的垂线,垂足分别为M,N,求|F1M|•|F2M|的值;
(2)若直线l与x轴、y轴分别交于A,B两点,求|AB|的最小值,并求此时直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx-1与双曲线C:x2-y2=4
(1)如果l与C只有一个公共点,求k的值;
(2)如果l与C的左右两支分别相交于A(x1,y1),B(x2,y2)两点,且|x1-x2|=2
5
,求k的值.

查看答案和解析>>

同步练习册答案