精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)=2sin(\frac{π}{2}-x)•sinx+\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在$[-\frac{π}{12},\;\frac{π}{6}]$上的最大值.

分析 (1)根据三角函数的辅助角公式进行化简结合三角函数的性质进行求解即可.
(2)求出角的范围结合三角函数的单调性和最值之间的关系进行求解即可.

解答 解:(Ⅰ)$f(x)=2cosx•sinx+\sqrt{3}cos2x$…(1分)
=$sin2x+\sqrt{3}cos2x$…(2分)
=$2sin(2x+\frac{π}{3})$,…(4分)
因此f(x)的最小正周期为π.…(6分)
(Ⅱ)当$x∈[-\frac{π}{12},\frac{π}{6}]$时,$\frac{π}{6}≤2x+\frac{π}{3}≤\frac{2π}{3}$,…(8分)
当$2x+\frac{π}{3}=\frac{π}{2}$,$sin(2x+\frac{π}{3})$有最大值1.…(10分)
即$x=\frac{π}{12}$时,f(x)的最大值为2.…(13分)

点评 本题主要考查三角函数图象和性质的考查,利用辅助角公式进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出S的值是(  )
A.10B.12C.100D.102

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设F1,F2分别是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,A为双曲线的左顶点,以线段F1,F2为直径的圆O与双曲线的一个交点为P,与y轴交于B,D两点,且与双曲线的一条渐近线交于M,N两点,则下列命题正确的是②③④.(写出所有正确的命题编号)
①线段BD是双曲线的虚轴;
②△PF1F2的面积为b2
③若∠MAN=120°,则双曲线C的离心率为$\frac{{\sqrt{21}}}{3}$;
④△PF1F2的内切圆的圆心到y轴的距离为a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.现有清华、北大、上海交大三所大学的招生负责人各一人来我市宣讲2017年高考自主招生政策,我市四所重点中学必须且只能邀请其中一所大学的负责人,且邀请其中任何一所大学的负责人是等可能的.
(Ⅰ)求恰有两所重点中学邀请了清华招生负责人的概率;
(Ⅱ)设被邀请的大学招生负责人的个数为ξ,求ξ分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向量$\vec a=(\sqrt{3},\;1)$,$\vec b=(\sqrt{3},\;-1)$,$\vec a$与$\vec b$夹角的大小为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|0<x<2},B={x|x2-1≤0},那么A∪B=(  )
A.{x|0<x≤1}B.{x|-1≤x<2}C.{x|-1≤x<0}D.{x|1≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,定义域为R的奇函数是(  )
A.y=x2+1B.y=tanxC.y=2xD.y=x+sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设$f(x)={sin^2}x-\sqrt{3}cosxcos({x+\frac{π}{2}})$,则f(x)在$[{0,\frac{π}{2}}]$上的单调递增区间为[0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a、b∈R,且2ab+2a2+2b2-9=0,若M为a2+b2的最小值,则约束条件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤3M}\\{|x|+|y|≤\sqrt{2}M}\end{array}\right.$所确定的平面区域内整点(横坐标纵坐标均为整数的点)的个数为(  )
A.29B.25C.18D.16

查看答案和解析>>

同步练习册答案