精英家教网 > 高中数学 > 题目详情
(2009•闵行区二模)(文)对于任意x∈(0,
π2
]
,不等式psin2x+cos4x≥0恒成立,则实数p的最小值为
0
0
分析:由psin2x+cos4x≥0,知p(1-cos2x-cosx4)≥0,所以-(cos2x+
p
2
2-p+
1
4
p2≥0,(cos2x-
p
2
2≤p-
1
4
p2,p≥4或p≤0,由此解得p的最小值为0.
解答:解:∵psin2x+cos4x≥0,
∴p(1-cos2x)+cosx4≥0,
-(cos2x+
p
2
2-p+
1
4
p2≥0,
(cos2x-
p
2
2≤p-
1
4
p2(1)
当p-
1
4
p2<0时(1)式显然不成立,
  p≥4或p≤0,
当0≤p≤2即0<
p
2
≤1,p-
1
4
p2≥0,
   0≤(cos2x-
p
2
2
1
4
p2≤p-
1
4
p2,0≤p≤2,
  2≤p≤4,0≤(cos2x-
p
2
2
1
4
p2≤p-
1
4
p2,p=2,
  p的最小值为0.
故答案为:0.
点评:本题考查正弦函数的图象和性质,解题时要认真审题,仔细解答,注意三角函数的恒等变换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)斜率为1的直线过抛物线y2=4x的焦点,且与抛物线交于两点A、B.
(1)求|AB|的值;
(2)将直线AB按向量
a
=(-2,0)
平移得直线m,N是m上的动点,求
NA
NB
的最小值.
(3)设C(2,0),D为抛物线y2=4x上一动点,证明:存在一条定直线l:x=a,使得l被以CD为直径的圆截得的弦长为定值,并求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)计算
lim
n→∞
2n2+1
3n(n-1)
=
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(理)若函数f(x)=
3x+1  (x≥1)
x-4
x-2
 (x<1).
则f-1(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)若f(x)=
x-4x-2
,则f-1(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闵行区二模)(文)若直线l经过点P(1,2),且法向量为
n
=(3,-4)
,则直线l的方程是
3x-4y+5=0
3x-4y+5=0
(结果用直线的一般式表示).

查看答案和解析>>

同步练习册答案