精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|x2-x<0},B={x|x2+2mx+2m+1<0},A∪B=A,求实数m的取值范围.

分析 求出A中不等式的解集确定出A,根据A与B的并集为A,分B为空集及不为空集两种情况,分别列出关于m的不等式,求出不等式的解集即可确定出m的范围.

解答 解:由题设A=(0,1),
∵A∪B=A,
∴B⊆A,
B=∅,△=4m2-4(2m+1)≤0,∴1-$\sqrt{2}$≤m≤1+$\sqrt{2}$.
B≠∅,m<1-$\sqrt{2}$或m>1+$\sqrt{2}$,且$\left\{\begin{array}{l}{0<-m<1}\\{2m+1<0}\\{1+2m+2m+1<0}\end{array}\right.$,∴-1<m<1-$\sqrt{2}$.
综上,-1<m≤1+$\sqrt{2}$.

点评 此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图,已知四边形ABCD的直观图是直角梯形A1B1C1D1,且A1B1=B1C1=2A1D1=4,则四边形ABCD的面积为(  )
A.12B.12$\sqrt{2}$C.24$\sqrt{2}$D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知A、B、C、D是空间四个不同的点,求证:AC⊥BD的等价条件是AD2+BC2=CD2+AB2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$=(-1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=e|x| (X∈[a,b])的值域是[1,e2],那么实数a,b应满足什么条件?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设x2+2xy-y2=2x,求$\frac{dy}{dx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC的面积为10,P是△ABC所在平面上的一点,满足$\overrightarrow{PA}$+$\overrightarrow{PB}$+2$\overrightarrow{PC}$=3$\overrightarrow{AB}$,则△ABP的面积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知P=log45,Q=log54,R=log4(log54),则(  )
A.R<Q<PB.P<R<QC.Q<R<PD.R<P<Q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.为得到y=22x+1的图象,只需将y=4x的图象向左平移$\frac{1}{2}$个单位.

查看答案和解析>>

同步练习册答案