精英家教网 > 高中数学 > 题目详情
(2012•东城区一模)若对于正整数k,g(k)表示k的最大奇数因数,例如g(3)=3,g(10)=5.设Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n)
(Ⅰ)求g(6),g(20)的值;
(Ⅱ)求S1,S2,S3的值;
(Ⅲ)求数列{Sn}的通项公式.
分析:(Ⅰ)利用g(k)表示k的最大奇数因数,可求g(6),g(20)的值;
(Ⅱ)根据g(k)表示k的最大奇数因数,确定相应的函数值,从而可求S1,S2,S3的值;
(Ⅲ)由(Ⅰ)(Ⅱ)不难发现对m∈N*,有g(2m)=g(m),从而可得当n≥2时,Sn=4n-1+Sn-1,利用Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1,即可求得结论.
解答:解:(Ⅰ)∵g(k)表示k的最大奇数因数,
∴g(6)=3,g(20)=5.                                           …(2分)
(Ⅱ)S1=g(1)+g(2)=1+1=2;S2=g(1)+g(2)+g(3)+g(4)=1+1+3+1=6;
S3=g(1)+g(2)+g(3)+g(4)+g(5)+g(6)+g(7)+g(8)=1+1+3+1+5+3+7+1=22.…(6分)
(Ⅲ)由(Ⅰ)(Ⅱ)不难发现对m∈N*,有g(2m)=g(m).            …(8分)
所以当n≥2时,Sn=g(1)+g(2)+g(3)+g(4)+…+g(2n-1)+g(2n)
=[g(1)+g(3)+g(5)+…+g(2n-1)]+[g(2)+g(4)+…+g(2n)]
=[1+3+5+…+(2n-1)]+[g(2×1)+g(2×2)+…+g(2×2n-1)]
=
(1+2n-1)×2n-1
2
+[g(1)+g(2)+…+g(2n-1)]
=4n-1+Sn-1…(11分)
于是Sn-Sn-1=4n-1,n≥2,n∈N*
所以Sn=(Sn-Sn-1)+(Sn-1-Sn-2)+…+(S2-S1)+S1=4n-1+4n-2+…+42+4+2
=
4(1-4n-1)
1-4
+2=
4n
3
+
2
3
,n≥2,n∈N*.       …(13分)
又S1=2,满足上式,
所以对n∈N*Sn=
1
3
(4n+2)
.                                 …(14分)
点评:本题考查新定义,考查数列的求和,解题的关键是正确理解新定义,正确求数列的和是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区一模)已知sin(45°-α)=
2
10
,且0°<α<90°,则cosα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)在如图所示的茎叶图中,乙组数据的中位数是
84
84
;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是
组.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)如图1,在边长为3的正三角形ABC中,E,F,P分别为AB,AC,BC上的点,且满足AE=FC=CP=1.将△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面EFB,连接A1B,A1P.(如图2)
(Ⅰ)若Q为A1B中点,求证:PQ∥平面A1EF;
(Ⅱ)求证:A1E⊥EP.

查看答案和解析>>

同步练习册答案