精英家教网 > 高中数学 > 题目详情
3.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个观测点C与D,测得∠BCD=75°,∠BDC=45°,CD=30米,并在C测得塔顶A的仰角为60°,则塔的高度AB为(  )
A.30$\sqrt{2}$米B.30$\sqrt{6}$米C.15($\sqrt{3}$+1)米D.10$\sqrt{6}$米

分析 在△BCD中使用正弦定理得出BC,在Rt△ABC中,利用特殊角的三角函数得出AB的值.

解答 解:∵∠BCD=75°,∠BDC=45°,∴∠CBD=60°.
在△BCD中使用正弦定理得$\frac{BC}{sin∠CDB}=\frac{CD}{sin∠CBD}$,即$\frac{BC}{sin45°}=\frac{30}{sin60°}$,
∴BC=$\frac{30×\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=10$\sqrt{6}$.
∵∠BCA=60°,∴∠CAB=30°,
∴AB=$\sqrt{3}$BC=30$\sqrt{2}$.
故选A.

点评 本题考查了正弦定理,解三角形的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.一个几何体的三视图如图所示,其中主(正)视图是边长为2的正三角形,俯视图是正方形,那么该几何体的侧面积是(  )
A.4$\sqrt{3}$+4B.4$\sqrt{3}$C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式$\frac{x-1}{x}$>2的解集是(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,-1)C.(-1,+∞)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的偶函数,记f(x)的导数为f′(x),当x>0时,xf′(x)+2f(x)>1,则不等式f(1+2x)>($\frac{x}{1+2x}$)2•f(x)的解集是(-∞,-1)∪(-$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某设备启用后,使用年份x(年)和所需的维修费用y(万元)有如下几组统计数据:
x23456
y2.23.85.56.57.0
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)估计该设备启用后第10年(即x=10)所需要的维修费用大约是多少?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2x+2a,f(x)≤0的解集为{x|-2≤x≤m}.
(Ⅰ)求a,m的值;
(Ⅱ)若关于x的不等式(c+a)x2+2(c+a)x-1<0恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),设F1,F2为其左、右焦点,P在双曲线右支上,半径为b+$\frac{b}{a}$的圆M为△PF1F2的内切圆,若点M到直线y=$\frac{b}{a}$x的距离为$\frac{1}{2}$,则双曲线的离心率为(  )
A.$\frac{3\sqrt{6}}{6}$B.$\frac{3}{2}$C.$\frac{\sqrt{6}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.等边三角形ABC的边长为2,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,$\overrightarrow{AB}$=$\overrightarrow{c}$,则$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$=(  )
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和Sn满足Sn=$\frac{1}{3}$(an-1)(n∈N*).
(1)求a1,a2,a3,a4
(2)由a1,a2,a3,a4的值猜想这个数列的通项公式(不用证明).

查看答案和解析>>

同步练习册答案