精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面为正方形,⊥底面分别是的中点,.

(Ⅰ)求证∥平面

(Ⅱ)求直线与平面所成的角;

(Ⅲ)求四棱锥的外接球的体积.

【答案】(Ⅰ)见解析;(Ⅱ)45°;(Ⅲ).

【解析】试题分析:(Ⅰ)欲证平面;连,根据中位线可以知道 ,不在平面,满足定理所需条件;

(Ⅱ)关键是证明平面,找到是直线与平面所成的角;

)利用补成正方体的思想,求外接球的半径.

试题解析:(Ⅰ)如图,连结,则的中点,又的中点,

.又∵平面

平面.

(Ⅱ)取的中点,连接.

在正方形中,的中点,有.

平面平面,∴

,∴平面

是直线在平面的射影,∴是直线与平面所成的角,

在直角三角形中,,所以.

∴直线与平面所成的角为45°.

(Ⅲ)设四棱锥的外接球半径为,则

,即.

所以外接球的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.

(1)若圆分别与轴、轴交于点(不同于原点),求证:的面积为定值;

(2)设直线与圆交于不同的两点,且,求圆的方程;

(3)设直线(2)中所求圆交于点为直线上的动点,直线与圆的另一个交点分别为,且在直线异侧,求证:直线过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.

(Ⅰ)求f()的值;

(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:

(1) 算出线性回归方程; (a,b精确到十分位)

(2)气象部门预测下个月的平均气温约为3℃,据此估计,求该商场下个月毛衣的销售量.

(参考公式:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x0x0+是函数f(x)=cos2wxsin2wx(ω>0)的两个相邻的零点

(1)求的值;

(2)若对任意,都有f(x)﹣m≤0,求实数m的取值范围.

(3)若关于的方程上有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据x1,x2,x3,…,xn是普通职工n(n≥3,n∈N*)个人的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入xn+1,则这n+1个数据中,下列说法正确的是

A. 年收入平均数大大增大,中位数一定变大,方差可能不变

B. 年收入平均数大大增大,中位数可能不变,方差变大

C. 年收入平均数大大增大,中位数可能不变,方差也不变

D. 年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,并且直线平分圆.

)求圆的方程;

)若过点,且斜率为的直线与圆有两个不同的交点.

)求实数的取值范围;

)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥 中底面边长为,侧棱PA与底面ABCD所成角的正切值为

(I)求正四棱锥 的外接球半径;

(II)若 中点,求异面直线 所成角的正切值.

查看答案和解析>>

同步练习册答案
閸忥拷 闂傦拷