圆:x2+y2-4x+6y=0和圆:x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是________.
3x-y-9=0
分析:现根据两个圆的方程求出圆心的坐标,由题意可得AB的垂直平分线的方程就是两圆的圆心所在的直线的方程,由两点式求得AB的垂直平分线的方程,再化为一般式.
解答:圆:x
2+y
2-4x+6y=0 的圆心坐标为(2,-3),圆:x
2+y
2-6x=0的圆心坐标为(3,0),
由题意可得AB的垂直平分线的方程就是两圆的圆心所在的直线的方程,由两点式求得AB的垂直平分线的方程是
,即3x-y-9=0,
故答案为 3x-y-9=0.
点评:本题主要考查用两点式求直线方程的方法,判断AB的垂直平分线的方程就是两圆的圆心所在的直线的方程,是解题的关键,属于基础题.