精英家教网 > 高中数学 > 题目详情
如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中正确的是                (把正确的答案都填上)

(1)AC⊥SB
(2)AB∥平面SCD
(3)SA与平面SBD所成的角等于SC与平面SBD所成的角
(4)AB与SC所成的角等于DC与SA所成的角
(1),(2),(3)

试题分析:∵SD⊥底面ABCD,底面ABCD为正方形,
∴连接BD,则BD⊥AC,根据三垂线定理,可得AC⊥SB,故(1)正确;
∵AB∥CD,AB?平面SCD,CD?平面SCD,
∴AB∥平面SCD,故(2)正确;
∵SD⊥底面ABCD,
∠ASO是SA与平面SBD所成的角,∠DSO是SC与平面SBD所成的,
而△SAO≌△CSO,
∴∠ASO=∠CSO,即SA与平面SBD所成的角等于SC与平面SBD所成的角,故(3)正确;
∵AB∥CD,∴AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,
而这两个角显然不相等,故(4)不正确;
故选D.
点评:小综合题,本题是涉及立体几何平行关系、垂直关系的典型题目。较全面的考查了线线关系、线面关系等,该几何模型也十分典型。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=
求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点EF分别在棱BB1CC1上,且BEBBC1FCC1.

(1)求异面直线AEA1 F所成角的大小;
(2)求平面AEF与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示在四棱锥P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是边长为2的正方形,△PAB为等边三角形。(12分)

(1)求PC和平面ABCD所成角的大小;
(2)求二面角B─AC─P的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知四棱锥的底面为平行四边形,分别是棱的中点,平面与平面交于,求证:

(1)平面
(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCDQAD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=

(1)求证:平面PQB⊥平面PAD
(2)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是异面直线,则(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距离相等;(4)一定存在无数对平面α和β,使mα,nβ且α⊥β。上述4个命题中正确命题的序号是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCDEPC的中点,作PB于点F

(I) 证明: PA∥平面EDB
(II) 证明:PB⊥平面EFD

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是两个不同的平面,是两条不同直线.①若,则
②若,则
③若,则
④若,则以上命题正确的是            .(将正确命题的序号全部填上)

查看答案和解析>>

同步练习册答案