【题目】已知数列的前n项和为,且满足+n=2(n∈)
(1)证明:数列为等比数列,并求数列的通项公式;
(2)数列满足(n∈),其前n项和为,试求满足+>2018的最小正整数n.
【答案】(1)见解析;(2)8.
【解析】分析:(1)利用公式an+1=Sn+1﹣Sn即可得出an+1+1=2(an+1),故数列{an+1}为等比数列,利用等比数列的通项公式得出an+1,从而得出an;
(2)化简bn=n2n﹣n,再使用分项求和和错位相减法求和得出Tn,进而解出n即可.
详解:
(1)∵Sn+n=2an,∴Sn+1+(n+1)=2an+1,
∴an+1+1=2an+1﹣2an,即an+1+1=2(an+1),
又a1+1=2a1,∴a1=1.
∴{an+1}是以2为首选,以2为公比的等比数列.
∴an+1=2n,∴an=2n﹣1.
(2)bn=(2n﹣1)log22n=n(2n﹣1)=n2n﹣n.
∴Tn=12+222+323+…+n2n﹣(1+2+3+…+n)
=12+222+323+…+n2n﹣.
设12+222+323+…+n2n=An,
则122+223+324+…+n2n+1=2An,
两式相减得2+22+23+…+2n﹣n2n+1=﹣An,
∴﹣An=﹣n2n+1=(1﹣n)2n+1﹣2,
∴An=(n﹣1)2n+1+2,
∴Tn=(n﹣1)2n+1+2﹣.
+(n﹣1)2n+1+2>2018
∴n=8
科目:高中数学 来源: 题型:
【题目】甲、乙两地相距,汽车从甲地行驶到乙地,速度不得超过,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 ()的平方成正比,比例系数为,固定部分为元,
(1)把全程运输成本(元)表示为速度()的函数,指出定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水仙花经营部每天的房租、水电、人工等固定成本为1000元,每盆水仙花的进价是10元,销售单价(元) ()与日均销售量(盆)的关系如下表,并保证经营部每天盈利.
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
20 | 35 | 40 | 50 | |
400 | 250 | 200 | 100 |
(Ⅰ) 在所给的坐标图纸中,根据表中提供的数据,描出实数对的对应点,并确定与的函数关系式;
(Ⅱ)求出的值,并解释其实际意义;
(Ⅲ)请写出该经营部的日销售利润的表达式,并回答该经营部怎样定价才能获最大日销售利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高级中学今年高一年级招收“国际班”学生人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:
第一批次 | 第二批次 | 第三批次 | |
女 | |||
男 |
已知在这名学生中随机抽取名,抽到第一批次、第二批次中女学生的概率分别是.
(1)求的值;
(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取名同学问卷调查,则三个批次被选取的人数分别是多少?
(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出结论:x+ ≥n+1(n∈N*),则a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 , , .
(1)若 ,且 ,求 的值;
(2)将函数 的图像向右平移 个单位长度得到函数 的图像,若函数 在 上有零点,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com