精英家教网 > 高中数学 > 题目详情
F1、F2是椭圆的两个焦点,若椭圆上存在一点P,使F1PF2=
3
,则它的离心率的取值范围是(  )
分析:依题意,不妨设椭圆的焦点在x轴,设椭圆的上顶点为A,由∠F1AO≥
π
3
即可求得它的离心率的取值范围.
解答:解:不妨设椭圆的焦点在x轴,设椭圆的上顶点为A,
∵椭圆上存在一点P,∠F1PF2=
3

∴∠F1AO≥
π
3

∴tan∠F1AO=
c
b
3

b
c
1
3
?
b2
c2
=
a2-c2
c2
1
3

c2
a2
3
4

∴e=
c
a
3
2
,又e<1.
3
2
≤e<1.
故选D.
点评:本题考查椭圆的简单性质,求得∠F1AO≥
π
3
是关键,也是难点,考查分析与逻辑思维能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点p(x,y)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0上的任意一点,F1、F2是椭圆的两个焦点,且∠F1PF2≤90°,则该椭圆的离心率的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是
[
1
2
,1)
[
1
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆
x2
8
+
y2
3
=1上的一点,F1、F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上有一点M,F1,F2是椭圆的两个焦点,若|MF1|•|MF2|=2b2,则椭圆离心率的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

P是椭圆上一定点,F1,F2是椭圆的两个焦点,若∠PF1F2=60°,∠PF2F1=30°,则椭圆的离心率为
3
-1
3
-1

查看答案和解析>>

同步练习册答案