精英家教网 > 高中数学 > 题目详情

甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记分,海选不合格记分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.
(1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望

(1) (2)

解析试题分析:概率与统计类解答题是高考常考的题型,以排列组合和概率统计等知识为工具,主要考查对概率事件的判断及其概率的计算,随机变量概率分布列的性质及其应用:对于(1),从所求事件的对立事件的概率入手即;对于(2),根据的所有可能取值:0,1,2,3;分别求出相应事件的概率P,列出分布列,运用数学期望计算公式求解即可.
(1)记“甲海选合格”为事件A,“乙海选合格”为事件B,“丙海选合格”为事件C,“甲、乙、丙至少有一名海选合格”为事件E.

(2)的所有可能取值为0,1,2,3.



所以的分布列为


0
1
2
3





 

考点:离散型随机变量的概率、分布列和数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.

(1)求直方图中的值;
(2)求续驶里程在的车辆数;
(3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响,已知射手射击了5
次,求:
(1)其中只在第一、三、五次击中目标的概率;
(2)其中恰有3次击中目标的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n
14
15
16
17
18
19
20
频数
10
20
16
16
15
13
10
 
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035-4085元为中等偏下收入国家;人均GDP为4085-12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如下表:

(1)判断该城市人均GDP是否达到中等偏上收入国家标准;
(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:

 
文艺节目
新闻节目
总计
20至40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
 
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):

场次
投篮次数
命中次数
场次
投篮次数
命中次数
主场1
22
12
客场1
18
8
主场2
15
12
客场2
13
12
主场3
12
8
客场3
21
7
主场4
23
8
客场4
18
15
主场5
24
20
客场5
25
12
 
(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记为表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这场比赛中的命中次数,比较的大小(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球次均未命中的概率为
(1)求乙投球的命中率
(2)若甲投球次,乙投球次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.

查看答案和解析>>

同步练习册答案