精英家教网 > 高中数学 > 题目详情
(本题满分12分)如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a
(I)求证:AB1⊥BC1
(II)求二面角B—AB1—C的大小;
(III)求点A1到平面AB1C的距离.


 
 

 

(1)略
(2)
(3)
(1)证明:∵ABC—A1B1C1是直三棱柱,
∴CC1⊥平面ABC, ∴AC⊥CC1
∵AC⊥BC, ∴AC⊥平面B1BCC1
∴B1C是AB1在平面B1BCC1上的射影.
∵BC=CC1, ∴四边形B1BCC1是正方形,
∴BC1⊥B1C. 根据三垂线定理得,
AB1⊥BC1.………………5分
(2)解:设BC1∩B1C=O,作OP⊥AB1于点P,
连结BP.∵BO⊥AC,且BO⊥B1 C,
∴BO⊥平面AB1C.
∴OP是BP在平面AB1C上的射影.
根据三垂线定理得,AB1⊥BP.
∴∠OPB是二面角B—AB1—C的平面角.…………8分
∵△OPB1~△ACB1, ∴ ∴
在Rt△POB中,
∴二面角B—AB1—C的大小为…………10分
(3)解:[解法1] ∵A1C1//AC,A1C1平面AB1C,
∴A1C1//平面AB1C.
∴点A1到平面AB1C的距离与点C1到平面AB1C.的距离相等.
∵BC1⊥平面AB1C, 
∴线段C1O的长度为点A1到平面AB1C的距离.
∴点A1到平面AB1C的距离为…………14分
[解法2]连结A1C,有,设点A1到平面AB1C的距离为h.
∵B1C1⊥平面ACC1A1, ∴

  ∴点A1到平面AB1C的距离为…………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方形ADEF所在平面和等腰梯形所在平面ABCD垂直,已知BC=2AD=4,
(I)求证:面ABF;
(II)求异面直线BE与AF所成的角;
(III)求该几何体的表面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分) 已知在正方体ABCD —A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG =

(1)求证:EF⊥B1C;
(2)求EF与G C1所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本题满分14分)右图为一简单集合体,其底面ABCD为正方形,平面
,且="2" .
(1)画出该几何体的三视图;
(2)求四棱锥B-CEPD的体积;
(3)求证:平面.                                        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、BC的中点.
(Ⅰ)求证:平面B1MN⊥平面BB1D1D;
(II)当点P为棱DD1中点时,求直线MB1与平面A1C1P所成角的正弦值;
            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图在三棱锥P-ABC中,PA=3,AC=AB=4,PB=PC=BC=5,D、E分别是BC、AC的中点,F为PC上的一点,且PF:FC=3:1。

(Ⅰ)求证:
(Ⅱ)试在PC上确定一点G,使平面ABG//平面DEF;
(Ⅲ)在满足(Ⅱ)的情况下,求直线GB与平面ABC所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCDEPD的中点,PA=2AB=2.
(Ⅰ)求四棱锥PABCD的体积V
(Ⅱ)若FPC的中点,求证PC⊥平面AEF
(Ⅲ)求证CE∥平面PAB

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.棱长均为1三棱锥,若空间一点满足,则的最小值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是夹角为的异面直线,则满足条件“,且”的平面(    )
A.不存在 B.有且只有一对
C.有且只有两对D.有无数对

查看答案和解析>>

同步练习册答案