精英家教网 > 高中数学 > 题目详情
15.函数y=3${\;}^{\sqrt{x-2}}}$的值域为[1,+∞).

分析 根据复合函数的性质,求解出u=$\sqrt{x-2}$的值域,再求解y=3u的值域即可.

解答 解:函数y=3${\;}^{\sqrt{x-2}}}$,
令u=$\sqrt{x-2}$,可知u≥0,
∴函数y=3u是增函数,在区间[0,+∞)是单调递增.
当u=0时,y取得最小值为1.
∴函数y=3${\;}^{\sqrt{x-2}}}$的值域为[1,+∞)
故答案为[1,+∞)

点评 本题考查了分段函数的值域的求法.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.某几何体由圆柱挖掉半个球和一个圆锥所得,三视图中的正视图和侧视图如图所示,求该几何体的表面积(  )
A.60πB.75πC.90πD.93π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.化简$\sqrt{1-{{sin}^2}{{140}°}}$=(  )
A.±cos40°B.cos40°C.-cos40°D.±|cos40°|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,一个顶点为A(2,0),离心率为$\frac{{\sqrt{2}}}{2}$,直线y=k(x-1)与椭圆C交于不同的两点M、N两点.
(1)求椭圆C的方程;
(2)当△AMN的面积为$\frac{{4\sqrt{2}}}{5}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足Sn+2=2an,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}}$,cn=$\frac{\sqrt{{b}_{n}{b}_{n+1}}}{\sqrt{n+1}+\sqrt{n}}$,求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|x2-2x-15>0},B={x|x-6<0}.命题p:“m∈A”;命题q:“m∈B”.
(1)若命题p为真命题,求实数m的取值范围;
(2)若命题“p∨q”和“p∧q”中均为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.四棱锥P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°.
(1)求证:平面PBC⊥平面PCD;
(2)若M为线段PC上一点,且$\overrightarrow{PM}$=2$\overrightarrow{MC}$,求线段AM与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中内角A,B,C所对的边分别为a,b,c,已QUOTE 知$2\sqrt{3}si{n^2}\frac{A+B}{2}-sinC=\sqrt{3}$
( I)求角C的大小;
( II)若$c=\sqrt{3},a=\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={(x,y)|x2=y+1,|x|<2,x∈Z},试用列举法表示集合A={(-1,0),(0,-1),(1,0)}.

查看答案和解析>>

同步练习册答案