A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
分析 运用定积分公式,计算可得a≥1,求得f(x)的导数,可得切线的斜率,结合对勾函数的单调性,即可得到所求最小值.
解答 解:由2${∫}_{0}^{\frac{π}{3}}$sinxdx=2•(-cosx)|${\;}_{0}^{\frac{π}{3}}$=-2(cos$\frac{π}{3}$-cos0)=2×$\frac{1}{2}$=1,
即有a≥1,
f(x)=ax+$\frac{1}{a}$ln(ax+1)的导数为f′(x)=a+$\frac{1}{a}$•$\frac{a}{ax+1}$
=a+$\frac{1}{ax+1}$,
可得k=a+$\frac{1}{a+1}$,
由a+1≥2,可得k=(a+1)+$\frac{1}{a+1}$-1≥2+$\frac{1}{2}$-1=$\frac{3}{2}$.
即有a=1时,k取得最小值$\frac{3}{2}$.
故选:B.
点评 本题考查导数的运用:求切线的斜率,考查定积分的运算,以及函数的单调性的运用:求最值,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$ | B. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$ | C. | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ | D. | -$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 148 | B. | 126 | C. | 102 | D. | 88 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 7 | C. | 9 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com