精英家教网 > 高中数学 > 题目详情

【题目】一辆汽车前往目的地需要经过个有红绿灯的路口.汽车在每个路口遇到绿灯的概率为(可以正常通过),遇到红灯的概率为(必须停车).假设汽车只有遇到红灯或到达目的地才停止前进,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.

1)求汽车在第个路口首次停车的概率;

2)求的概率分布和数学期望.

【答案】1;2分布列见解析,数学期望 .

【解析】

1)汽车在第3个路口首次停车是指汽车在前两个路口都遇到绿灯,在第3个路口遇到绿灯,由此利用相互独立事件概率乘法公式能求出汽车在第3个路口首次停车的概率.

2)设前往目的地途中遇到绿灯数为,则,用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.的可能取值为024,由此能求出的概率分布列和数学期望

解:(1)由题意知汽车在前两个路口都遇到绿灯,在第3个路口遇到绿灯,

汽车在第3个路口首次停车的概率为:

2)设前往目的地途中遇到绿灯数为,则

用随机变量表示前往目的地途中遇到红灯数和绿灯数之差的绝对值.

的可能取值为024,则

的概率分布列为:

0

2

4

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于不等式,其中

1)试求不等式的解集

2)对于不等式的解集,若满足(其中为整数集).试探究集合能否为有限集?若能,求出使得集合中元素个数最少时的取值范围,并用列举法表示集合;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研机构为了研究喝酒与糖尿病是否有关,现对该市30名男性成人进行了问卷调查,并得到了如下列联表,规定平均每天喝100ml以上的为常喝.已知在所有的30人中随机抽取1人,是糖尿病的概率为.

常喝

不常喝

合计

有糖尿病

2

无糖尿病

18

合计

30

1)请将上表补充完整;

2)是否有的把握认为糖尿病与喝酒有关?请说明理由.

3)已知常喝酒且有糖尿病的人中恰有两名女性,现从常喝酒且有糖尿病的人中随机抽取2人,求恰好抽到一名男性和一名女性的概率.

参考公式:

参考数据:

k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】0, 1, 2, 3, 4, 5这六个数字, 可以组成______个无重复数字的三位数, 也可以组成______个能被5整除且无重复数字的五位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2名女生、4名男生排成一排,求:

12名女生不相邻的不同排法共有多少种?

2)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上单调递减,求的取值范围;

(2)若过点可作曲线的三条切线,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2x+2sinxcosx+a,且当x∈[0,]时,f(x)的最小值为2.

(1)求a的值,并求f(x)的单调递增区间;

(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的直角坐标为,直线与曲线的交点为,求的值.

查看答案和解析>>

同步练习册答案