精英家教网 > 高中数学 > 题目详情
(2013•佛山一模)如图,已知圆O的直径AB长度为4,点D为线段AB上一点,且AD=
1
3
DB
,点C为圆O上一点,且BC=
3
AC
.点P在圆O所在平面上的正投影为点D,PD=BD.
(1)求证:CD⊥平面PAB;
(2)求点D到平面PBC的距离.
分析:(1)由AB是圆的直径,得到AC⊥CB,结合BC=
3
AC算出∠ABC=30°,进而得到BC=2
3
.△BCD中用余弦定理算出CD长,从而CD2+DB2=BC2,可得CD⊥AO.再根据PD⊥平面ABC,得到PD⊥CD,结合线面垂直的判定定理即可证出CD⊥平面PAB;
(2)根据(1)中计算的结果,利用锥体体积公式算出VP-BDC=
3
3
2
,而VP-BDC=VD-PDC,由此设点D到平面PBC的距离为d,可得
1
3
S△PBC•d=
3
3
2
,结合△PBC的面积可算出点D到平面PBC的距离.
解答:解:(1)∵AB为圆O的直径,∴AC⊥CB,
∵Rt△ABC中,由
3
AC=BC
,∴tan∠ABC=
AC
BC
=
3
3
,∠ABC=30°,
∵AB=4,3AD=DB,∴DB=3,BC=2
3

由余弦定理,得△BCD中,CD2=DB2+BC2-2DB•BCcos30°=3,
∴CD2+DB2=12=BC2,可得CD⊥AO.-----------------(3分)
∵点P在圆O所在平面上的正投影为点D,即PD⊥平面ABC,
又∵CD?平面ABC,∴PD⊥CD,-----------------(5分)
∵PD∩AO=D得,∴CD⊥平面PAB.-----------------(6分)
(2)由(1)可知,PD=DB=3,且Rt△BCD中,CD=BCsin30°=
3
,--------(7分)
VP-BDC=
1
3
S△BDC•PD=
1
3
1
2
DB•DC•PD=
1
3
×
1
2
×3×
3
×3=
3
3
2
.--------(10分)
又∵PB=
PD2+DB2
=3
2
PC=
PD2+DC2
=2
3
BC=
DB2+DC2
=2
3

∴△PBC为等腰三角形,可得S△PBC=
1
2
×3
2
×
12-
9
2
=
3
15
2
.--------(12分)
设点D到平面PBC的距离为d,由VP-BDC=VD-PBC,得
1
3
S△PBC•d=
3
3
2
,解之得d=
3
5
5
.--------(14分)
点评:本题给出底面△ABC在外接圆中的三棱锥,求证线面垂直并求点到平面的距离,着重考查了线面垂直的判定与性质、锥体体积公式和点面距离的求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•佛山一模)已知
a
=(1,2),
b
=(0,1),
c
=(k,-2),若(
a
+2
b
)⊥
c
,则k=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)对于函数y=f(x),如果存在区间[m,n],同时满足下列条件:
①f(x)在[m,n]内是单调的;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“和谐区间”.若函数f(x)=
a+1
a
-
1
x
(a>0)
存在“和谐区间”,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)数列{an}的前n项和为Sn=2an-2,数列{bn}是首项为a1,公差不为零的等差数列,且b1,b3,b11成等比数列.
(1)求a1,a2,a3的值;
(2)求数列{an}与{bn}的通项公式;
(3)求证:
b1
a1
+
b2
a2
+
b3
a3
+…+
bn
an
<5.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)某工厂生产某种产品,每日的成本C(单位:元)与日产里x(单位:吨)满足函数关系式C=3+x,每日的销售额R(单位:元)与日产量x满足函数关系式S=
3x+
k
x-8
+ 5.(0<x<6)
14 (x≥6)
,已知每日的利润L=S-C,且当x=2时,L=3
(Ⅰ)求k的值;
(Ⅱ)当日产量为多少吨时,毎日的利润可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•佛山一模)
组别 候车时间 人数
[0,5) 2
[5,10) 6
[10,15) 4
[15,20) 2
[20,25] 1
城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:min):
(1)求这15名乘客的平均候车时间;
(2)估计这60名乘客中候车时间少于10分钟的人数;
(3)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

同步练习册答案