精英家教网 > 高中数学 > 题目详情

【题目】(2017高考新课标Ⅲ19)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBDAB=BD.

(1)证明:平面ACD⊥平面ABC

(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值.

【答案】(1)见解析;(2).

【解析】试题分析:(1)利用题意证得二面角的平面角为90°,则可得到面面垂直;

(2)利用题意求得两个半平面的法向量,然后利用二面角的夹角公式可求得二面角DAEC的余弦值为.

试题解析:(1)由题设可得,,从而.

是直角三角形,所以.

AC的中点O,连接DO,BO,则DOAC,DO=AO.

又由于是正三角形,故.

所以为二面角的平面角.

中,.

,所以

.

所以平面ACD⊥平面ABC.

(2)由题设及(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.则.

由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即EDB的中点,得.

.

是平面DAE的法向量,则

可取.

是平面AEC的法向量,则同理可取.

.

所以二面角D-AE-C的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如果函数在定义域内存在区间[ab],使[ab]上的值域是[2a2b],那么称倍增函数

I)判断=是否为倍增函数,并说明理由;

II)证明:函数=倍增函数

III)若函数=ln)是倍增函数,写出实数m的取值范围。(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为1的直线与椭圆交于两点,且线段的中点为,椭圆的上顶点为.

(1)求椭圆的离心率;

(2)设直线与椭圆交于两点,若直线的斜率之和为2,证明:过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数是函数值不恒为零的奇函数,函数

1)求实数的值,并判断函数的单调性;

2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,规定排放时污染物的残留含量不得超过1%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:为正常数,为原污染物数量).若前5个小时废气中的污染物被过滤掉了90%,那么要能够按规定排放废气,至少还需要过滤(

A. 小时B. 小时C. 5小时D. 小时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,是棱的中点,是侧面内的动点,且平面,则与平面所成角的正切值构成的集合是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,侧面底面,则三棱锥外接球的体积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案