精英家教网 > 高中数学 > 题目详情
8.已知f(x)=x4+4x3+6x2+4x+1,则f(9)=10000.

分析 由已知得f(x)=(((x+4)x+6)x+4)x+1,由此能求出f(9)的值.

解答 解:∵f(x)=x4+4x3+6x2+4x+1,
∴f(x)=(((x+4)x+6)x+4)x+1,
v0=1,v1=9+4=13,v2=13×9+6=123,
v3=123×9+4=1111,v4=1111×9+1=10000,
∴f(9)=10000.
故答案为:10000.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意秦九韶算法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=3sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈R
(1)函数的最小正周期;
(2)函数单调增区间;
(3)函数的最小值及取得最小值时x的值;
(4)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x>y>0,且m=$\frac{1}{2x(x-y)}$,n=${x}^{2}+\frac{1}{xy}$,则m+$\frac{n}{2}$的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知sinx-cosx=$\frac{1}{5}$(0≤x<π),则tanx等于(  )
A.-$\frac{3}{4}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若曲线y=$\sqrt{1-{x}^{2}}$与直线y=x+b始终有交点,则b的取值范围是[-1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点F1、F2分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左、右焦点,过F1且垂直于x轴的直线与椭圆交于 M、N两点,若△M NF2为等腰直角三角形,则该椭圆的离心率e为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-1+\sqrt{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.Sn为数列{an}的前n项和,a1=1,${S_n}=\frac{n}{n-1}{S_{n-1}}+n$(n≥2,n∈N+).
(1)求{an}的通项公式;
(2)设${c_n}={2^{a_n}}•{a_n}$,求{cn}的前n项和 Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ax2+bx+c(a>0,b∈R,C∈R),若函数f(x)的最小值是f(-1)=0,f(0)=1且对称轴是x=-1,g(x)=$\left\{\begin{array}{l}{f(x)(x>0)}\\{-f(x)(x<0)}\end{array}\right.$
(1)求g(2)+g(-2)的值;
(2)求f(x)在区间[t,t+2](t∈R)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.先化简,再求值:$\frac{{{x^2}-x}}{{{x^2}-1}}×(2+\frac{{{x^2}+1}}{x})$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

同步练习册答案