精英家教网 > 高中数学 > 题目详情
20.在二项式($\root{3}{{x}^{2}}$-$\frac{1}{2}$)n的展开式中,只有第5项的二项式系数最大,则n=8;展开式中的第4项为-7${x}^{\frac{10}{3}}$.

分析 由条件利用二项式系数的性质求得n=8,再利用二项展开式的通项公式求得展开式中的第4项.

解答 解:在二项式($\root{3}{{x}^{2}}$-$\frac{1}{2}$)n的展开式中,只有第5项的二项式系数${C}_{n}^{4}$最大,则n=8.
展开式中的第4项为T4=${C}_{8}^{3}$•${{(x}^{\frac{2}{3}})}^{5}$•${(-\frac{1}{2})}^{3}$=-7${x}^{\frac{10}{3}}$,
故答案为:8,-7${x}^{\frac{10}{3}}$.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某几何体的三视图如图,则此几何体的体积为(  )
A.6B.34C.44D.54

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,直线PA与圆相切于点A,过P作直线与圆交于C、D两点,点B在圆上,且∠PAC=∠BCD.
(1)证明:AB∥CD;
(2)若PC=2AC,求$\frac{AP}{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆C1:$\left\{\begin{array}{l}{x=m+2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ为参数)及抛物线C2:y2=6(x-$\frac{3}{2}$),当C1∩C2≠∅时,则m的取值范围为[-$\frac{1}{2}$,$\frac{7}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a+b=2,则4a+4b的最小值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设已知函数f(x)=|x-a|-$\frac{4}{x}$+a,a∈R,
(Ⅰ)当x∈[1,4]时,求函数f(x)的最大值的表达式M(a)
(Ⅱ)是否存在实数a,使得f(x)=3有且仅有3个不等实根,且它们成等差数列,若存在,求出所有a的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有一扇形其弧长为6,半径为3,则该弧所对弦长为6sin1,扇形面积为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=x2-x-2,x∈[-5,5],在定义域内任取一点x0,使f(x0)>0的概率是(  )
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知递增等比数列{an},满足a1=1,且a2a4-2a3a5+a4a6=36.
(1)求数列{an}的通项公式;
(2)设bn=log3an+$\frac{1}{2}$,求数列{an2•bn}的前n项和Sn
(3)在(2)的条件下,令cn=$\frac{1}{{b}_{n}{b}_{n+1}{b}_{n+2}}$,{cn}的前n项和为Tn,若Tn>λ恒成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案