精英家教网 > 高中数学 > 题目详情

【题目】已知点C是平面直角坐标系中的一个动点,过点C且与y轴垂直的直线与直线交于点M,若向量与向量垂直,其中O为坐标原点.

1)求点C的轨迹方程E

2)过曲线E的焦点作互相垂直的两条直线分别交曲线EABPQ四点,求四边形APBQ的面积的最小值.

【答案】(1);(2)32.

【解析】

(1)设点,转化条件得,即可得解;

2)设直线,直线,联立方程组可得,则,求出最小值即可得解.

1)设点.

由题意,点,则.

因为向量与向量垂直,

所以.

.

故点的轨迹方程是.

2)由(1)知,抛物线E的焦点是

设直线,则直线.

联立,消去

,则.

所以.

设点,同理可得.

所以

,当且仅当,即时等号成立.

即四边形的面积的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点作圆的两条切线,切点分别为,给出下列四个结论:

②若为直角三角形,则

外接圆的方程为

④直线的方程为.

其中所有正确结论的序号为(

A.②④B.③④C.②③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为两非零有理数列(即对任意的均为有理数),为一无理数列(即对任意的为无理数).

1)已知,并且对任意的恒成立,试求的通项公式.

2)若为有理数列,试证明:对任意的恒成立的充要条件为

3)已知,对任意的恒成立,试计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的展开图如图二,其中四边形为边长等于的正方形,均为正三角形,在三棱锥中:

1)证明:平面平面

2)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,的中点,是等边三角形,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左顶点为A,右焦点为F,且|AF|=3.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点F做互相垂直的两条直线l1,l2分别交直线l:x=4于M,N两点,直线AM,AN分别交椭圆于P,Q两点,求证:P,F,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,的中点,平面,且在矩形中,.

1)求证:

2)求证:平面

3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)经过点(平面直角坐标系中点)作直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线交于两点,与椭圆交于两点,直线为坐标原点)的斜率分别为,若.

(1)是否存在实数,满足,并说明理由;

(2)求面积的最大值.

查看答案和解析>>

同步练习册答案