精英家教网 > 高中数学 > 题目详情
14.已知等比数列{an}中,a5+a7=${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx,则a6(a4+2a6+a8)的值为(  )
A.16π2B.2C.2D.π2

分析 先利用定积分的几何意义计算定积分${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx的值,然后利用等比数列的性质进行化简整理,可得结论.

解答 解:∵${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx,表示以原点为圆心以2为半径的圆的面积的二分之一,
∴${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx=$\frac{1}{2}$π×4=2π,
∴a5+a7=2π,
∵等比数列{an},
∴a6(a4+2a6+a8)=a6a4+2a62+a6a8=a52+2a5a7+a72=(a5+a72=4π2
故选:B.

点评 本小题主要考查定积分、定积分的几何意义、圆的面积等基础知识,以及等比数列的性质,同时考查了运算求解的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.直线y=kx+1-k与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1的公共点个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sinx=$\frac{1}{2}$,则sin($\frac{π}{2}$+x)•tan(π-x)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=log2(3x-1)的零点是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过点M(0,0),且平行于向量$\overrightarrow{a}$=(1,2)的直线方程是(  )
A.x-2y=0B.x+2y=0C.2x+y=0D.2x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,三棱柱ABC-A′B′C′,BC=1,BC′=1,CC′=$\sqrt{2}$,面ABC⊥面BCC′B′,E、F分别为棱AB、CC′的中点.
(Ⅰ)求证:EF∥面A′BC′;
(Ⅱ)求证:面ABC′⊥面A′B′C′.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知偶函数f(x)满足f(x)=f(4-x)(x∈R),且当x∈[-2,0]时,f(x)=-x2,则f(2010)的值是(  )
A.-4B.0C.4D.-20102

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将函数y=cosx图象上所有的点向右平移$\frac{5π}{6}$个单位,可得到函数y=sin(x-$\frac{π}{3}$)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了调查一款项链的销售数量x(件)与销售利润y(万元)之间的相关关系,某公司的市场专员作出调查并将结果统计如表所示:
x(件) 3 4 5 6 8 10
 y(万元) 3 2 4 78
(Ⅰ)请在下列坐标纸中作出x,y的散点图;
(Ⅱ)若某同学根据如表中的数据(6,6)和(8,7)求得的直线方程为y=b′x+a′,请根据上表数据计算x,y的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并比较$\widehat{b}$与b′以及$\widehat{a}$与a′的大小关系.
(注,$\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\underset{\stackrel{n}{∑}}{i=1}x}_{i}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

同步练习册答案