精英家教网 > 高中数学 > 题目详情
9.已知$|\vec a|=1,|\vec b|=2,\vec a•\vec b=1$,则$|\vec a+\vec b|$等于(  )
A.7B.$\sqrt{7}$C.3D.$\sqrt{3}$

分析 直接利用向量的数量积,以及向量的模,求解即可.

解答 解:$|\vec a|=1,|\vec b|=2,\vec a•\vec b=1$,
则$|\vec a+\vec b|$=$\sqrt{|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{1+4+2}$=$\sqrt{7}$.
故选:B.

点评 本题考查向量的数量积的运算向量的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.各项都是正数的等比数列{an},若a2,$\frac{1}{2}$a3,2a1成等差数列,则$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值为(  )
A.2B.2或-1C.$\frac{1}{2}$D.$\frac{1}{2}$或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\overrightarrow a=(m+1,0,2m),\overrightarrow b=(6,2n-1,2),若\overrightarrow a∥\overrightarrow b$,则m与n的值分别为(  )
A.$\frac{1}{5}$,$\frac{1}{2}$B.-$\frac{1}{5}$,-$\frac{1}{2}$C.5,2D.-5,-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=2sinxcosx+2$\sqrt{3}{cos^2}x-\sqrt{3}$的最小正周期是π,单调递减区间是[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)和g(x)的定义域均为R,f(x)是偶函数,g(x)是奇函数,且g(x)的图象过点(1,3),g(x)=f(x-1),则f(2012)+g(2013)=(  )
A.6B.4C.-4D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6相交.则?p及?p的真假为(  )
A.¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为真
B.¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为假
C.¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为真
D.¬p:?a∈R,直线ax+y-2a-1=0与圆x2+y2=6不相交,¬p为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,左右顶点分别为A1,A2,过F1作斜率不为0的直线l与椭圆交于A,B两点,△ABF2的周长为8.椭圆上一点P与A1,A2连线的斜率之积${k_{P{A_1}}}•{k_{P{A_2}}}=-\frac{1}{4}$(点P不是左右顶点A1,A2).
(Ⅰ)求该椭圆方程;
(Ⅱ)已知定点M(0,m)(其中常数m>0),求椭圆上动点N与M点距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=mx2+2mx+1.
(1)当m=1时,求不等式f(x)>-x-2的解集.
(2)若f(x)>0对任意x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的四个点M(1,1)、$P({\frac{1}{2},\frac{1}{2}})$、Q(2,1)、$H({2,\frac{1}{2}})$中,“好点”的个数为(  )个.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案