本小题满分10分)
在△ABC中,A、B为锐角,角A、B、C所对的边分别为、、,且,。
(1)求角C的值;
(2)若a-b=-1,求、、的值。
(1);(2)a=,b=1,c=。
【解析】
试题分析:∵A、B为锐角,sinA=,sinB=,
∴cosA==,cosB==,
∴cosC=-cos(A+B)=-(cosAcosB-sinAsinB)
=-(×-×)=.
∵0<C<π,∴C= ---------------5分
(2)由(1)知C=,∴sinC=.
由正弦定理==得a=b=c,即a=b,c=b,
∵a-b=-1,∴b-b=-1,∴b=1,
∴a=,c=. ---------------10分
考点:本题考查正弦定理;诱导公式;三角形内的隐含条件。
点评:熟练掌握公式及定理是解本题的关键.在解题过程中,要仔细计算,避免出现计算错误。
科目:高中数学 来源: 题型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com