精英家教网 > 高中数学 > 题目详情

【题目】已知,若在圆上存在点使得成立,则的取值范围为_____

【答案】

【解析】

先由PA2+PB2=20得P点轨迹为圆,然后问题转化为两圆有交点,圆心距小于等于半径之和,大于等于半径之差.

:∵圆C:(x-m)2+(y+m)2=9,∴圆心为C(m,-m),半径为3,设P(x,y),则由PA2+PB2=20,得(x+1)2+y2+(x-5)2+y2=20,即x2+y2-4x+3=0,∴(x-2)2+y2=1,在圆C:x2+y2-2mx+2my+2m2-9=0(m∈R)上存在点P使得PA2+PB2=20成立,转化为:圆C:

(x-m)2+(x+m)2=9与圆:(x-2)2+y2=1有交点,转化为:圆心距小于等于两圆半径之和,大于等于两圆半径之差,即3-1≤≤3+1,解得:-2≤m≤0或2≤m≤3.

故答案为:-2≤m≤0或2≤m≤3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(Ⅰ)证明:坐标原点O在圆M上;
(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形的三边长是公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长是(

A. 18 B. 15 C. 21 D. 24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形与梯形全等, 中点.

(Ⅰ)证明: 平面

(Ⅱ)点在线段上(端点除外),且与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学高中某学科竞赛中,该中学100名考生的参赛成绩统计如图所示.

(1)求这100名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);

(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?

合格

优秀

合计

男生

18

女生

25

合计

100

附:

0.050

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设的顶点分别为,圆的外接圆,直线的方程是.

(1)求圆的方程;

(2)证明:直线与圆相交;

(3)若直线被圆截得的弦长为3,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.

(1)求椭圆的方程;

(2)设是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线轴相交于定点

(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列
(1)在等差数列{an}中,a6=10,S5=5,求该数列的第8项a8
(2)在等比数列{bn}中,b1+b3=10,b4+b6= ,求该数列的前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在同一个坐标系中画出函数y=ax , y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案