精英家教网 > 高中数学 > 题目详情
4.直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t为参数)与曲线C:y2-x2=1交于A,B两点.
(1)求|AB|的长;
(2)求AB中点M的坐标.

分析 直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t为参数)与曲线C:y2-x2=1联立,即7t2+70t-25=0,利用参数的几何意义,即可求解.

解答 解:直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t为参数)与曲线C:y2-x2=1联立,即7t2+70t-25=0…2
(1)$|AB|=|{t_1}-{t_2}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\frac{{20\sqrt{14}}}{7}$…6
(2)${t_M}=\frac{{{t_1}+{t_2}}}{2}=-5$,${x_M}=-1+\frac{3}{5}×(-5)=-4$,${y_M}=1+\frac{4}{5}×(-5)=-3$,
故M(-4,-3)…10

点评 本题考查参数方程的运用,考查参数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若幂函数f(x)的图象经过点(2,$\frac{1}{4}$),则f(3)=$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=(x2-1)2+2的极值点是(  )
A.x=1B.x=-1或0C.x=-1或1或0D.x=0或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,已知角α的终边经过点P(-3,4)
(1)求sinα和cosα的值;
(2)化简并求值:$\frac{{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}}{{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的体积为(  )
A.16B.$\frac{16}{3}$C.32D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P出发,绕圆锥爬行一周后回到点P处,若该小虫爬行的最短路程为$4\sqrt{3}$,则这个圆锥的体积为(  )
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{32\sqrt{35}π}}{27}$C.$\frac{{128\sqrt{2}π}}{81}$D.$\frac{{8\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设曲线y=3x-ln(x+1)在点(0,0)处的切线方程2x-y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=sin2x,x∈R的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow{b}$=(3,-4tanα),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则sinα=-$\frac{3}{5}$;若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则cos($\frac{3π}{2}$-α)+sin(π+α)=-$\frac{6}{5}$.

查看答案和解析>>

同步练习册答案