精英家教网 > 高中数学 > 题目详情
已知f(x)=2x+3,则f(1)=
 
,f(a)=
 
考点:函数的值
专题:函数的性质及应用
分析:直接利用函数的解析式求解即可.
解答: 解:已知f(x)=2x+3,
则f(1)=5,
f(a)=2a+3.
故答案为:5;2a+3.
点评:本题考查函数值的求法,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x+1)2+y2=20点B(l,0).点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.
(I)求动点P的轨迹C1的方程;
(Ⅱ)设M(0,
1
5
)
,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线Cl于P,Q两点,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=
1-x2
x+3
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
5
是无理数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O′:(x+2)2+y2=8及点A(2,0),在圆O′上任取一点B,连结AB并作AB的中垂线l,设l与直线O′B交于点P,若B取遍圆O′上的点,则点P的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在等腰直角三角形ABC中,∠C=90°,D是B的中点,E是AB上一点,且AE=2EB,求证:AD⊥CE.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,底面为等边三角形且侧棱与底面垂直,E是棱BB1上的点,AB=AA1,且平面A1EC⊥平面AA1C1C.
(Ⅰ)证明:E为BB1的中点;
(Ⅱ)求平面A1EC与平面A1B1C1所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2,g(x)=alnx+bx(a>0).
(1)若f(1)=g(1),f′(1)=g′(1)求F(x)=f(x)-g(x)的极小值;
(2)在(1)的结论下,是否存在实常数k和m,使得f(x)≥kx+m和g(x)≤kx+m同时成立?若存在,求出k和m的值.若不存在,说明理由.
(3)设G(x)=f(x)+2-g(x)有两个零点x1和x2,若x0=
x1+x2
2
,试探究G′(x0)值的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的主视图与左视图都是边长为1的正方形,且体积为
1
2
,则该几何体的俯视图可以是
 

查看答案和解析>>

同步练习册答案