【题目】某生态农场有一矩形地块,地块内有一半圆形池塘(如图所示),其中百米,百米,半圆形池塘的半径为1百米,圆心与线段的中点重合,半圆与的左侧交点为.该农场计划分别在和上各选一点,修建道路,要求与半圆相切.
(1)若,求该道路的总长;
(2)若为观光道路,修建费用是4万元/百米,为便道,修建费用是1万元/百米,求修建观光道路与便道的总费用的最小值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某学校高三年级共1000名男生中随机抽取50人测量身高,据测量,被测学生身高全部介于到之间,将测量结果按如下方式分成八组:第一组,第二组,…,第八组.如图是按上述分组方法得到的频率分布直方图的一部分.其中第六组、第七组、第八组人数依次构成等差数列.
(1)求第六组、第七组的频率,并估计高三年级全体男生身高在以上(含)的人数;
(2)学校决定让这五十人在运动会上组成一个高旗队,在这五十人中要选身高在以上(含)的两人作为队长,求这两人在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.
(1)当时.
①求数列的通项公式;
②若,求数列的前项的和;
(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数与仰卧起坐
个数之间的关系如下:;测试规则:每位队员最多进行三组测试,每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”在一分钟内限时测试的频率分布直方图如下:
(1)计算值;
(2)以此样本的频率作为概率,求
①在本次达标测试中,“喵儿”得分等于的概率;
②“喵儿”在本次达标测试中可能得分的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的左右焦点分别为,,离心率为,椭圆C上的一点P到,的距离之和等于4.
(1)求椭圆C的标准方程;
(2)设,过椭圆C的右焦点的直线与椭圆C交于A,B两点,若满足恒成立,求m的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商家统计了去年,两种产品的月销售额(单位:万元),绘制了月销售额的雷达图,图中点表示产品2月份销售额约为20万元,点表示产品9月份销售额约为25万元.
根据图中信息,下面统计结论错误的是( )
A.产品的销售额极差较大B.产品销售额的中位数较大
C.产品的销售额平均值较大D.产品的销售额波动较小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某学校高二年级学生的物理成绩,从中抽取名学生的物理成绩(百分制)作为样本,按成绩分成5组:,频率分布直方图如图所示,成绩落在中的人数为20.
男生 | 女生 | 合计 | |
优秀 | |||
不优秀 | |||
合计 |
(1)求和的值;
(2)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数和中位数;
(3)成绩在80分以上(含80分)为优秀,样本中成绩落在中的男、女生人数比为1:2,成绩落在中的男、女生人数比为3:2,完成列联表,并判断是否所有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:
0.50 | 0.05 | 0.025 | 0.005 | |
0.455 | 3.841 | 5.024 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆M与直线相切,且与圆N:外切
(1)求动圆圆心M的轨迹C的方程;
(2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为A,B,当直线与的斜率之积为时,求证:直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com