精英家教网 > 高中数学 > 题目详情
如图所示,正方体ABCDA1B1C1D1的棱长为6,则以正方体ABCDA1B1C1D1的中心为顶点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的全面积为________.
(18+24)π
设O为正方体外接球的球心,则O也是正方体的中心,O到平面AB1D1的距离是体对角线长的,即为.又球的半径是正方体对角线长的一半,即为3,由勾股定理可知,截面圆的半径为=2,圆锥底面面积为S1=π·(2)2=24π,圆锥的母线即为球的半径3,圆锥的侧面积为S2=π×2×3=18π.因此圆锥的全面积为S=S2+S1=18π+24π=(18+24)π.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱中,,,.

(1)证明:;
(2)若,,求三棱柱的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.

(1)当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.

(1)求证:平面ADC1⊥平面BCC1B1
(2)求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥的五个顶点在同一球面上,若该正四棱锥的底面边长为2,侧棱长为,则这个球的表面积为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四面体的六条棱中,有五条棱长都等于a.
(1)求该四面体的体积的最大值;
(2)当四面体的体积最大时,求其表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个三棱柱的侧棱垂直于底面,且所有棱长都为a,则此三棱柱的外接球的表面积为( )
A.πa2B.15πa2C.πa2D.πa2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知ABCD是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABCAD=2AB=6,则该球的表面积为(  )
A.16πB.24πC.32πD.48π

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在三棱柱A1B1C1ABC中,D,E,F分别是AB,AC,AA1的中点.设三棱锥FADE的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1∶V2=    

查看答案和解析>>

同步练习册答案