精英家教网 > 高中数学 > 题目详情

【题目】如图,抛物线的焦点为F,准线为x轴于点A,并截圆所得弦长为M为平面内动点,MAF周长为6

1)求抛物线方程以及点M的轨迹的方程;

2过轨迹的一个焦点作与轴不垂直的任意直线交轨迹两点,线段的垂直平分线交轴于点,则为定值,且定值是”.命题中涉及了这么几个要素:给定的圆锥曲线,过该圆锥曲线焦点的弦的垂直平分线与焦点所在的对称轴的焦点的长度与两点间距离的比值.试类比上述命题,写出一个关于抛物线的类似的正确命题,并加以证明.

3)试推广(2)中的命题,写出关于抛物线的一般性命题(不必证明).

【答案】1;(2)过抛物线的焦点作与轴不垂直的任意直线,交抛物线于两点,线段的垂直平分线交轴于点,则为定值,且定值为,证明见解析;(3)过抛物线的焦点作与对称轴不垂直的任意直线,交抛物线于两点,线段的垂直平分线交对称轴于点,则为定值,且定值为

【解析】

1)根据弦长公式可求出弦心距,即得准线的方程和点的坐标,从而可求出抛物线方程,再根据MAF周长为6,设出点,根据椭圆的定义即可求出点M的轨迹的方程;

2)根据题意类比即可写出;

3)利用(2)中原理,即可写出.

1)设圆心到直线的距离为,∴,解得

所以准线,点,点,即有,∴,即抛物线

因为,所以,即点的轨迹是以点为焦点,长轴长为,焦距为的椭圆,∴解得,即有

故点M的轨迹的方程为

2)关于抛物线的类似的正确命题为:过抛物线的焦点作与轴不垂直的任意直线,交抛物线于两点,线段的垂直平分线交轴于点,则为定值,且定值为.证明如下:

如图所示:

设直线

得,,设

所以

的中点坐标为

的垂直平分线的方程为:,令,解得

又因为,所以

3)过抛物线的焦点作与对称轴不垂直的任意直线,交抛物线于两点,线段的垂直平分线交对称轴于点,则为定值,且定值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC-A1B1C1中,ACBC,且AA1=AB=2.下列说法正确的是(

A.四棱锥B-A1ACC1为“阳马”

B.四面体A1C1CB为“鳖膈”

C.四棱锥B-A1ACC1体积最大为

D.A点分别作AEA1B于点EAFA1C于点F,则EFA1B

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.

(1)求动圆圆心的轨迹的方程;

(2)已知为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,抛物线C的焦点到直线l的距离为.

1)求m的值.

2)如图,已知抛物线C的动弦的中点M在直线l上,过点M且平行于x轴的直线与抛物线C相交于点N,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且其离心率为,过坐标原点作两条互相垂直的射线与椭圆分别相交于两点.

1)求椭圆的方程;

2)是否存在圆心在原点的定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:

消费次数

1

2

3

不少于4

收费比例

0.95

0.90

0.85

0.80

现随机抽取了100位会员统计它们的消费次数,得到数据如下:

消费次数

1

2

3

不少于4

频数

60

25

10

5

假设该项目的成本为每次30元,根据给出的数据回答下列问题:

1)估计1位会员至少消费两次的概率

2)某会员消费4次,求这4次消费获得的平均利润;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点到点的距离与到直线的距离的比值为

1)求动点的轨迹的方程;

2)过点的直线与点的轨迹交于两点,设点到直线的距离分别为,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为广泛开展垃圾分类的宣传教育和倡导工作,使市民树立垃圾分类的环保意识,学会垃圾分类的知识,特举办了“垃圾分类知识竞赛".据统计,在为期1个月的活动中,共有两万人次参与网络答题.市文明实践中心随机抽取100名参与该活动的市民,以他们单次答题得分作为样本进行分析,由此得到如图所示的频率分布直方图:

1)求图中a的值及参与该活动的市民单次挑战得分的平均成绩(同一组中数据用该组区间中点值作代表);

2)若垃圾分类答题挑战赛得分落在区间之外,则可获得一等奖奖励,其中s分别为样本平均数和样本标准差,计算可得,若某人的答题得分为96分,试判断此人是否获得一等奖;

3)为扩大本次“垃圾分类知识竞赛”活动的影响力,市文明实践中心再次组织市民组队参场有奖知识竞赛,竞赛共分五轮进行,已知“光速队”与“超能队”五轮的成绩如下表:

成绩

第一轮

第二轮

第三轮

第四轮

第五轮

“光速队”

93

98

94

95

90

“超能队”

93

96

97

94

90

①分别求“光速队”与“超能队”五轮成绩的平均数和方差;

②以上述数据为依据,你认为"光速队”与“超能队”的现场有奖知识竞赛成绩谁更稳定?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有边长均为1的正方形正五边形正六边形及半径为1的圆各一个,在水平桌面上无滑动滚动一周,它们的中心的运动轨迹长分别为,则(

A.B.C.D.

查看答案和解析>>

同步练习册答案