精英家教网 > 高中数学 > 题目详情
已知函数在区间[-1,1]上单调递减,在区间[1,2]上单调递增,
(1)求实数a的值;
(2)若关于x的方程f(2x)=m有三个不同实数解,求实数m的取值范围;
(3)若函数y=log2[f(x)+p]的图象与坐标轴无交点,求实数p的取值范围.
【答案】分析:(1)由已知中函数在区间[-1,1]上单调递减,在区间[1,2]上单调递增根据函数取零点的条件,可得f’(1)=0,由此构造关于实数a的方程,解方程即可得到答案.
(2)由(1)中结论,我们可以求出函数f(x)的解析式及其导函数的解析式,进而分析出函数的单调性和极值,再根据方程f(2x)=m有三个不同实数解,即f(x)=m有三个不同的正实数解,求出满足条件的实数m的取值范围;
(3)根据函数y=log2[f(x)+p]的图象与坐标轴无交点,则f(x)+p>0,f(x)+p≠1,构造关于P的不等式组,解不等式组求出实数p的取值范围.
解答:解:(1)∵函数
∴f’(x)=-x3+2x2+2ax-2
依题意,f(x) 在区间[-1,1]上单调递减,在[1,2]上单调递增,
所以f(x)在x=1处有极值,即f’(1)=-1+2+2a-2=0,解出a=
(2)由(1)得
f’(x)=-x3+2x2+x-2
令t=2x,(t>0)则t=2x为增函数,每个x对应一个t,
而由题意:f(2x)=m有三个不同的实数解,就是说,关于t的方程f(t)=m在t>0时有三个不同的实数解.
∵f’(t)=-t3+2t2+t-2=-(t+1)(t-1)(t-2)
令f’(t)≥0以求f(t)的增区间,得-(t+1)(t-1)(t-2)≥0,保证t>0,求得f(t)的增区间为1≤t≤2
令f’(t)≤0以求f(t)的减区间,得-(t+1)(t-1)(t-2)≤0,保证t>0,求得f(t)的减区间为0<t≤1或t≥2
所以f(t),
在t=1时有极小值,极小值为f(1)=
在t=2时有极大值,极大值为f(2)=
在t趋向于0时,f(t)趋向于-2.
<-2
f(t)在t>0上的图象为双峰形的一半,则要使f(t)=m有三个不同的实数解,须-<m<
(3)∵函数y=log2[f(x)+p]的真数部分为f(x)+p,
∴f(x)+p>0,
要使函数y=log2[f(x)+p]的图象与x轴无交点,只有f(x)+p≠1,
由(2)知,f(x)的最大值为f(-1)=-,即f(x)≤-
所以f(x)+p≤p-,要使f(x)+p≠1,只有p-<1,才能满足题意,解之得,p<
又由f(x)+p>0,即p>
故p的范围是<p<
点评:本题考查的知识点是函数取极值的条件,函数与方程的综合应用,根的存在性及根的个数判断,利用导数研究函数的单调性,指数函数的性质,对数函数的性质,是对函数性质及解答方法比较综合的考查,熟练掌握基本初等函数的性质,会使用导数法求函数的单调性和极值点是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a为实常数,已知函数在区间[1,2]上是增函数,且在区间[0,1]上是减函数。

(Ⅰ)求常数的值;

(Ⅱ)设点P为函数图象上任意一点,求点P到直线距离的最小值;

(Ⅲ)若当时,恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省瑞安中学高二下学期期中考试理科数学 题型:填空题

.已知函数在区间[1,2]上不是单调函数,则错误!不能通过编辑域代码创建对象。的范围为         

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省杭州高级中学高三第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函数在区间[-1,1]上单调递减,在区间[1,2]上单调递增,
(1)求实数a的值;
(2)若关于x的方程f(2x)=m有三个不同实数解,求实数m的取值范围;
(3)若函数y=log2[f(x)+p]的图象与坐标轴无交点,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三第一次月考理科数学卷 题型:填空题

已知函数在区间[-1,1]上至少存在一个实数c使f(c)>0,则实数p的范围     

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省高二下学期期中考试理科数学 题型:填空题

.已知函数在区间[1,2]上不是单调函数,则错误!不能通过编辑域代码创建对象。的范围为          

 

查看答案和解析>>

同步练习册答案