精英家教网 > 高中数学 > 题目详情
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。
(1)
(2) CH不可能同时垂直BD和BA,即CH不与面ABD垂直

试题分析:解: 依题意,ABD=90o,建立如图的坐标系使得△ABC在yoz平面上,

△ABD与△ABC成30o的二面角, DBY=30o,又AB=BD=2,  A(0,0,2),B(0,0,0),
C(0,,1),D(1,,0),
(1)x轴与面ABC垂直,故(1,0,0)是面ABC的一个法向量。
设CD与面ABC成的角为,而= (1,0,-1),
sin==
[0,],=;      6分
(2) 设=t= t(1,,-2)= (t,t,-2 t),
=+=(0,-,1) +(t,t,-2 t) = (t,t-,-2 t+1),
,则 (t,t-,-2 t+1)·(0,0,2)="0" 得t=,      10分
此时=(,-,0),而=(1,,0),·=-=-10, 不垂直,即CH不可能同时垂直BD和BA,即CH不与面ABD垂直。       12分
点评:主要是考查了空间中线面位置关系的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,棱底面,,的中点.

(1)证明平面
(2)证明平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在各棱长均为的三棱柱中,侧面底面

(1)求侧棱与平面所成角的正弦值的大小;
(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆锥顶点为.底面圆心为,其母线与底面所成的角为.是底面圆上的两条平行的弦,轴与平面所成的角为

(Ⅰ)证明:平面与平面的交线平行于底面;
(Ⅱ)求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

(1) 求证:AB⊥平面ADC;
(2) 求三棱锥的体积;
(3) 求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x、y、z是空间中不同的直线或平面,对下列四种情形:
①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面,其中使“x⊥z且y⊥z⇒x∥y”为真命题的是  (     )
A.③④B.①③
C.②③D.①②

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为的正方体中,错误的是(    )
A.直线和直线所成角的大小为
B.直线平面
C.二面角的大小是
D.直线到平面的距离为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直四棱柱中,已知

(Ⅰ)求证:
(Ⅱ)设上一点,试确定的位置,使平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱点M,N分别为的中点.

(Ⅰ)证明:∥平面
(Ⅱ)若二面角A为直二面角,求的值.

查看答案和解析>>

同步练习册答案