精英家教网 > 高中数学 > 题目详情

【题目】已知函数,是自然对数的底数).

1)若上的单调递增函数,求实数的取值范围;

(2)当时,证明:函数有最小值,并求函数最小值的取值范围.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析: (Ⅰ)先将单调性转化为不等式恒成立:当时,函数恒成立,再变量分离转化为对应函数最值:的最小值,最后根据导数求函数最值,(Ⅱ)利用二次求导,确定导函数为单调递增函数,再利用零点存在定理确定导函数有且仅有一个零点,根据导函数符号变化规律得函数在此零点(极小值点)取最小值.最后利用导函数零点表示函数最小值,并根据导函数零点取值范围,利用导数方法确定最小值函数的值域.

试题解析: (Ⅰ)

依题意:当时,函数恒成立,即恒成立,

,则

所以上单调递增,所以,所以,即

(Ⅱ)因为,所以上的增函数,

,所以存在使得

且当,当,所以的取值范围是

又当,当时,

所以当时,.且有

,则

所以,即最小值的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】集合A={x|ax2-2x+2=0},集合B={y|y2-3y+2=0},如果AB,求实数a的取值集合..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上是单调递减的一次函数,且f(f(x))4x1.

(1)f(x)

(2)求函数yf(x)x2xx[1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=1,S5=-15.

(1) 求数列{an}的通项公式;

(2) 若数列{an}的前k项和Sk=-48,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地方政府要将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场.已知AD//BC, 百米, 百米,广场入口PAB上,且,根据规划,过点P铺设两条相互垂直的笔直小路PM,PN(小路的宽度不计),点M,N分别在边AD,BC上(包含端点),区域拟建为跳舞健身广场, 区域拟建为儿童乐园,其它区域铺设绿化草坪,设.

(1)求绿化草坪面积的最大值;

(2)现拟将两条小路PNM,PN进行不同风格的美化,PM小路的美化费用为每百米1万元,PN小路的美化费用为每百米2万元,试确定M,N的位置,使得小路PM,PN的美化总费用最低,并求出最小费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求实数的值;2)判断并证明上的单调性;

3)若对任意实数,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1 (t为参数)曲线C2+y2=4.

(1)在同一平面直角坐标系中,将曲线C2上的点按坐标变换后得到曲线C′。求曲线C′的普通方程,并写出它的参数方程;

(2)若C1上的点P对应的参数为t=π/2,Q为C′上的动点,求PQ中点M到直线C3 (t为参数)的距离的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的极坐标方程为,直线的参数方程为.若直线与圆C相交于不同的两点P,Q.

(Ⅰ)写出圆C的直角坐标方程,并求圆心的坐标与半径;

(Ⅱ)若弦长|PQ|=4,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个正数ab,可按规则扩充为一个新数c,在abc三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.

(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是_____________

(2)若p>q>0,经过6次操作后扩充所得的数为mn为正整数),

mn的值分别为____________

查看答案和解析>>

同步练习册答案