【题目】在直角坐标系平面上的一列点,,…,,记为,若由构成的数列满足,,其中为与轴正方向相同的单位向量,则称为点列.
(1)判断,,,…,,是否为点列,并说明理由;
(2)若为点列.且点在点的右上方,(即)任取其中连续三点,,判断的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;
(3)若为点列,正整数,满足.求证:.
科目:高中数学 来源: 题型:
【题目】已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设过点的直线,分别与曲线交于,两点,直线,的斜率存在,且倾斜角互补,证明:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分)。若直角三角形中较小的锐角为a。现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为,则_____________。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆:,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线和半径相交于点.当点在圆上运动时,点的轨迹为曲线.
(1)求曲线的方程;
(2)设过点的直线与曲线相交于两点(点在两点之间).是否存在直线使得?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站,且他们各自在每个站下车的可能性是相同的.
(1)若甲、乙两人共付费元,则甲、乙下车方案共有多少种?
(2)若甲、乙两人共付费元,求甲比乙先到达目的地的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,已知,,平面平面,点分别是的中点,,连接.
(1)若,并异面直线与所成角的余弦值的大小;
(2)若二面角的余弦值的大小为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数y=H(x),若在其定义域内存在x0,使得x0·H(x0)=1成立,则称x0为函数H(x)的“倒数点”.已知函数f(x)=ln x,g(x)=(x+1)2-1.
(1)求证:函数f(x)有“倒数点”,并讨论函数f(x)的“倒数点”的个数;
(2)若当x≥1时,不等式xf(x)≤m[g(x)-x]恒成立,试求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,若椭圆上的点与两个焦点构成的三角形中,面积最大为1.
(1)求椭圆的标准方程;
(2)设直线与椭圆的交于两点,为坐标原点,且,证明:直线与圆相切.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com