精英家教网 > 高中数学 > 题目详情

设圆的面积为S,半径为r,求面积S关于半径r的变化率.

答案:略
解析:

解析:∵


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在半径为R、圆心角为
π3
的扇形金属材料中剪出一个长方形EPQF,并且EP与∠AOB的平分线OC平行,设∠POC=θ.
(1)试写出用θ表示长方形EPQF的面积S(θ)的函数.
(2)现用EP和FQ作为母线并焊接起来,将长方形EFPQ制成圆柱的侧面,能否从△OEF中直接剪出一个圆面作为圆柱形容器的底面?如果不能请说明理由.如果可能,求出侧面积最大时容器的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在半径为R、圆心角为
π3
的扇形金属材料中剪出一个长方形EPQF,并且EP与∠AOB的平分线OC平行,设∠POC=θ.
(1)试写出用θ表示长方形EPQF的面积S(θ)的函数;
(2)在余下的边角料中在剪出两个圆(如图所示),试问当矩形EPQF的面积最大时,能否由这个矩形和两个圆组成一个有上下底面的圆柱?如果可能,求出此时圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Q是圆O′:(x+1)2+y2=8上的动点,F是抛物线y2=4x的焦点,线段FQ的垂直平分线l交半径O′Q于点P.
(1)求点P的轨迹C的方程;
(2)斜率为k的直线l过点(0,
k2+1
)且与轨迹C交于不同的两点A,B,记△AB0的面积为S=f(k),若
OA
 • 
OB
=m
3
5
≤m≤
3
4
),求f(k)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设Q是圆O′:(x+1)2+y2=8上的动点,F是抛物线y2=4x的焦点,线段FQ的垂直平分线l交半径O′Q于点P.
(1)求点P的轨迹C的方程;
(2)斜率为k的直线l过点(0,
k2+1
)且与轨迹C交于不同的两点A,B,记△AB0的面积为S=f(k),若
OA
 • 
OB
=m
3
5
≤m≤
3
4
),求f(k)的最大值和最小值.

查看答案和解析>>

同步练习册答案