精英家教网 > 高中数学 > 题目详情

【题目】已知函数 为自然对数的底数)在点处的切线经过点

(Ⅰ)讨论函数的单调性;

(Ⅱ)若,不等式恒成立,求实数的取值范围.

【答案】(1) 当时,函数上单调递减;当时,函数上递减,函数上单调递增;(2).

【解析】试题分析: (Ⅰ)求出,由过点的直线的斜率为可得,讨论两种情况,分别由得增区间, 得减区间;(Ⅱ)原不等式等价于不等式恒成立,利用导数研究的单调性,求其最小值,令其最小值不小于零即可得结果.

试题解析:(Ⅰ)因为,所以过点的直线的斜率为

,由导数的几何意义可知,

所以,所以.则

时, ,函数上单调递减;当时,由

时, ,函数单调递减,当时,

函数单调递增.

(Ⅱ)不等式恒成立,即不等式恒成立,设

,则,函数单调递增且不存在最小值,不满足题意;当时,由

时, 单调递减;

时, 单调递增,

所以,要使得恒成立,只需恒成立,由于,所以有,解得,即当时, 恒成立,即恒成立,也即不等式恒成立,所以实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.
(1)列出样本的频率分布表;
(2)画出频率分布直方图和频率分布折线图;
(3)估计成绩在[60,90)分的学生比例;
(4)估计成绩在85分以下的学生比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥S﹣ABC中,AB⊥BC,AB=BC= ,SA=SC=2,二面角S﹣AC﹣B的余弦值是 ,若S、A、B、C都在同一球面上,则该球的表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数k,若数列{an}满足

=2kan对任意正整数n(n> k) 总成立,则称数列{an} 是“P(k)数列”.

(1)证明:等差数列{an}是“P(3)数列”;

若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( ,cos ), =(cos ,1),且f(x)=
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[﹣π,π]上的最大值和最小值及取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,前n项和为 是首项为2的等比数列,且公比大于0, , .

(Ⅰ)求的通项公式;

(Ⅱ)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.

(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;

(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=48x﹣x3 , x∈[﹣3,5]
(1)求单调区间;
(2)求最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过点(1,﹣2),且与直线m:4x﹣3y+1=0平行;
(1)求直线l的方程;
(2)求直线l被圆x2+y2=9所截得的弦长.

查看答案和解析>>

同步练习册答案