精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,错误的是()

A. 一条直线与两个平行平面中的一个相交, 则必与另一个平面相交

B. 平行于同一平面的两个不同平面平行

C. 若直线不平行平面, 则在平面内不存在与平行的直线

D. 如果平面不垂直平面, 那么平面内一定不存在直线垂直于平面

【答案】C

【解析】由直线与平面相交的性质,知一条直线与两个平行平面中的一个相交,则必与另一个平面相交,故A正确;

由平面平行的判定定理知,平行于同一平面的两个不同平面平行,故B正确;

若直线l不平行平面α,则当lα时,在平面α内存在与l平行的直线,故C不正确;

由直线与平面垂直的性质定理,知如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面β,故D正确。

本题选择C选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中a为常数.

,求a的值;

时,关于x的不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中表示的导函数的取值.

(1)的值及函数的单调区间;

(2)的定义域内恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求该函数的定义域;

(2)当时,如果对任何都成立,求实数的取值范围;

(3)若,将函数的图像沿轴方向平移,得到一个偶函数的图像,设函数的最大值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近年投入的年研发费用与年销售量的数据,得到散点图如图所示.

(1)利用散点图判断(其中均为大于的常数)哪一个更适合作为年销售量和年研发费用的回归方程类型(只要给出判断即可,不必说明理由)

(2)对数据作出如下处理,令,得到相关统计量的值如下表:根据第(1)问的判断结果及表中数据,求关于的回归方程;

15

15

28.25

56.5

(3)已知企业年利润(单位:千万元)与的关系为(其中),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列同时满足:①对于任意的正整数 恒成立;②对于给定的正整数 对于任意的正整数恒成立,则称数列是“数列”.

(1)已知判断数列是否为“数列”,并说明理由;

(2)已知数列是“数列”,且存在整数,使得 成等差数列,证明: 是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上是增函数,求实数的取值范围;

(2)若存在实数使得关于的方程有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且

)求证:数列是等差数列;

)求数列的通项公式;

)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的导函数,讨论的单调性;

(2)若是自然对数的底数),求证:.

查看答案和解析>>

同步练习册答案