精英家教网 > 高中数学 > 题目详情

【题目】某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:

注:尺寸数据在内的零件为合格品,频率作为概率.

(Ⅰ) 从产品中随机抽取件,合格品的个数为,求的分布列与期望;

(Ⅱ) 从产品中随机抽取件,全是合格品的概率不小于,求的最大值;

(Ⅲ) 为了提高产品合格率,现提出两种不同的改进方案进行试验.若按方案进行试验后,随机抽取件产品,不合格个数的期望是;若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?

【答案】(Ⅰ)分布列见解析,; (Ⅱ); (Ⅲ)选择方案.

【解析】

(Ⅰ)先根据直方图求出合格率,然后求出ξ的可能取值和相应的概率,作分布列,再利用随机变量的分布列进行求期望;

(Ⅱ)根据n件产品都合格的概率大于等于0.3,列不等式求解n的最大值;

(Ⅲ)根据期望求出A,B方案不合格的概率,即可选择.

(Ⅰ)由直方图可知,抽出产品为合格品的频率为,即抽出产品为合格品的概率为, 从产品中随机抽取件,合格品的个数的所有可能取值为,,, ,, 所以的分布列为

故数学期望

(Ⅱ) 随机抽取件,全是合格品的概率为,依题意,故的最大值为.

(Ⅲ) 按方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数

方案随机抽取产品不合格的概率是,随机抽取件产品,不合格个数,

依题意,,解得,

因为,所以应选择方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从集合中删去个数,使得剩下的元素中,任两个数之和均不为2015的因数。求的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1,F2,离心率,且椭圆的短轴长为2.

(1)求椭圆的标准方程;

(2)已知直线l1l2过右焦点F2,且它们的斜率乘积为﹣1,设l1l2分别与椭圆交于点A,B和C,D.①求AB+CD的值;②设AB的中点M,CD的中点为N,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次考试中500名学生的物理(满分为150分)成绩服从正态分布,数学成绩的频率分布直方图如图所示.

(Ⅰ)如果成绩大于135分为特别优秀,那么本次考试中的物理、数学特别优秀的大约各有多少人?

(Ⅱ)如果物理和数学两科都特别优秀的共有4人,是否有99.9%的把握认为物理特别优秀的学生,数学也特别优秀?

附:①若,则

②表及公式:

0.50

0.40

0.010

0.005

0.001

0.455

0.708

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形ABCD的边长为2,ACBD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.

(1)a=2,求证:AO平面BCD.

(2)当二面角A-BD-C的大小为120°,求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)对任意的实数,恒有成立,求实数的取值范围;

)在()的条件下,当实数取最小值时,讨论函数时的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推进千村百镇计划20194月某新能源公司开展电动绿色出行活动,首批投放200型新能源车到某地多个村镇,供当地村民免费试用三个月.试用到期后,为了解男女试用者对型新能源车性能的评价情况,该公司要求每位试用者填写一份性能综合评分表(满分为100分).最后该公司共收回有效评分表600份,现从中随机抽取40份(其中男、女的评分表各20份)作为样本,经统计得到茎叶图:

1)求40个样本数据的中位数

2)已知40个样本数据的平均数,记的最大值为.该公司规定样本中试用者的认定类型:评分不小于的为满意型,评分小于的为需改进型”.

①请以40个样本数据的频率分布来估计收回的600份评分表中,评分小于的份数;

②请根据40个样本数据,完成下面2×2列联表:

认定类型

性别

满意型

需改进型

合计

女性

20

男性

20

合计

40

根据2×2列联表判断能否有99%的把握认为认定类型与性别有关?

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)如果把棱柱中过不相邻的两条侧棱的截面叫棱柱的对角面,则平行六面体的对角面的形状是_______,直平行六面体的对角面的形状是______

2)过正三棱柱底面的一边和两底面中心连线段的中点作截面,则这个截面的形状为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案