精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
,焦距2c=4,过点(2,3),
(1)求双曲线的标准方程及其渐近线方程.
(2)直线l:y=kx+1与双曲线有且仅有一个公共点,求k的值.
(1)由已知得:
2c=4
4
a2
-
9
b2
=1
c2=a2+b2
,解得
c=2
a=1,b2=3

∴双曲线的方程为x2-
y2
3
=1

双曲线的渐近线:y=±
3
x

(2)联立
y=kx+1
3x2-y2=3
消y得:(3-k2) x2-2kx-4=0.
当3-k2=0时,即k=±
3
x=-
2
k

此时直线l与双曲线有且仅有一个公共点,满足题意.        
当3-k2≠0时,△=4 k2-4(3-k2)(-4)=0.解得k=±2.
综上所述k=±
3
或k=±2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案