精英家教网 > 高中数学 > 题目详情

【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )

A. B.

C. D.

【答案】C

【解析】对于A,由图可知 ,可得 ,A正确对于B, ,所以B正确;对于C, 时, ;C错误;对于D, ,D正确.故选C.

【方法点晴】本题通过对多个命题真假的判断考察数列的各种性质及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

≥5

保费

0.85a

a

1.25a

1.5a

1.75a

2a

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

≥5

频数

60

50

30

30

20

10

(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;

(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;

(3)求续保人本年度平均保费的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线交于两点,与椭圆交于两点,直线为坐标原点)的斜率分别为,若.

(1)是否存在实数,满足,并说明理由;

(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在明代程大位所著的《算法统宗》中有这样一首歌谣,放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且它的焦距是短轴长的.

1)求椭圆的方程.

2)若是椭圆上的两个动点(两点不关于轴对称),为坐标原点,的斜率分别为,问是否存在非零常数,使当时,的面积为定值?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:①若“”是“”的充要条件;

②若“”,则实数的取值范围是

③已知平面,直线,若,则

④函数的所有零点存在区间是.

其中正确的个数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为的函数满足,当时,.时,恒成立,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知正方形铁片边长为2a米,四边中点分别为EFGH,沿着虚线剪去大正方形的四个角,剩余为四个全等的等腰三角形和一个正方形ABCD(两个正方形中心重合且四边相互平行),沿正方形ABCD的四边折起,使EFGH四点重合,记为P点,如图2,恰好能做成一个正四棱锥(粘贴损耗不计),PO⊥底面ABCDO为正四棱锥底面中心,设正方形ABCD的边长为2x.

1)若正四棱锥的棱长都相等,求所围成的正四棱锥的全面积S

2)请写出正四棱锥的体积V关于x的函数,并求V的最大值.

查看答案和解析>>

同步练习册答案