已知函数的定义域为,部分对应值如下表.
的导函数的图象如图所示.
下列关于函数的命题:①函数在是减函数;
②如果当时,的最大值是2,那么的最大值为4;
③当时,函数有4个零点.
其中真命题的个数是
A.0个 B.3个 C. 2个 D.1个
D
【解析】
试题分析:由导函数的图象和原函数的关系得,原函数的大致图象如图:
由图得:①为假命题,[-1,0]与[4,5]上单调性相反,但原函数图象不一定对称;②为真命题.因为在[0,2]上导函数为负,故原函数递减;③为假命题,当t=5时,也满足x∈[-1,t]时,f(x)的最大值是2;④为假命题,当a离1非常接近时,对于第二个图,y=f(x)-a有2个零点,也可以是3个零点.综上得:真命题只有②.故选D。
考点:函数的单调性与导数的关系;函数的最值及其几何意义;函数的周期性;函数的零点.
点评:本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2013-2014学年浙江省杭州市七校高三上学期期中联考理科数学试卷(解析版) 题型:解答题
已知函数的定义域为,
(1)求;
(2)若,且是的真子集,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届辽宁朝阳高二下学期期中考试理科数学试卷(解析版) 题型:选择题
已知函数的定义域为,部分对应值如下表。的导函数的图像如图所示。
0 |
|||||
下列关于函数的命题:
①函数在上是减函数;②如果当时,最大值是,那么的最大值为;③函数有个零点,则;④已知是的一个单调递减区间,则的最大值为。
其中真命题的个数是( )
A、4个 B、3个 C、2个 D、1个
查看答案和解析>>
科目:高中数学 来源:2010-2011学年海南省海口市高三高考调研考试理科数学 题型:选择题
已知函数的定义域为,且,为的导函数,函数的图象如图所示.若正数,满足,则的取值范围是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com