精英家教网 > 高中数学 > 题目详情
设函数f(x)=
x2+1
-ax(a>0)

(I)求证:当且仅当a≥1时,f(x)在[0,+∞)内为单调函数;
(II)求a的取值范围,使函数f(x)在区间[1,+∞)上是增函数.
分析:(I)先求函数f(x)=
x2+1
-ax(a>0)
的导数f′(x),再证明a≥1时,f′(x)<0,f(x)单调;而a<1时,f′(x)先负后正,f(x)不单调
(II)由(1)知a≥1时f(x)单调递减,不合题意,当0<a<1时,使函数f(x)在区间[1,+∞)上是增函数,需[1,+∞)是函数单调增区间的子区间,可求a的范围
解答:解:(I)∵f′(x)=
x
x2+1
-a

①当a≥1时,∵
x
x2+1
|x|
x2+1
<1≤a
,∴f(x)在[0,+∞)上单调递减
②当0<a<1时,由f′(x)<0,得0≤x<a
x2+1
⇒0≤x<
a
1-a2

由f′(x)>0得x>a
x2+1
⇒x>
a
1-a2

∴当0<a<1时,f(x)在[0,
a
1-a2
)为减函数,而在(
a
1-a2
,+∞)
,为增函数,
∴当0<a<1时,f(x)在[0,+∞)上不是单调函数;
综上,当且仅当a≥1时,f(x)在[0,+∞)上为单调函数.
(II)由(I)①知当a≥1时f(x)单调递减,不合;  由②知当f(x)在[1,+∞)上单调递增等价于:
a
1-a2
≤1
,∴0<a≤
2
2
,即a的取值范围是(0,
2
2
]
点评:本题考查了导数在函数的单调性上的应用,解题时要学会对参数进行讨论,做到不重不漏,还要注意一题中两问间的关系
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当p1,p2,…,pn均为正数时,称
n
p1+p2+…+pn
为p1,p2,…,pn的“均倒数”.已知数列{an}的各项均为正数,且其前n项的“均倒数”为
1
2n+1

(1)求数列{an}的通项公式;
(2)设cn=
an
2n+1
(n∈N*),试比较cn+1与cn的大小;
(3)设函数f(x)=-x2+4x-
an
2n+1
,是否存在最大的实数λ,使当x≤λ时,对于一切正整数n,都有f(x)≤0恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,(x<0)
-x+3,(x≥0)
,且f(-4)=f(0),f(-2)=-1.
(1)求函数f(x)的解析式; 
(2)画出函数f(x)的图象,并指出函数f(x)的单调区间.
(3)若方程f(x)=k有两个不等的实数根,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C所对边长分别是a,b,c,设函数f(x)=x2+bx-
1
4
为偶函数,且f(cos
B
2
)=0

(1)求角B的大小;
(2)若△ABC的面积为
3
4
,其外接圆的半径为
2
3
3
,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c,-4≤x<0
-x+3,0≤x≤4
,且f(-4)=f(0),f(-2)=-1.
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-x+n
x2+x+1
(x∈R,x≠
n-1
2
,x∈N*)
,f(x)的最小值为an,最大值为bn,记cn=(1-an)(1-bn
则数列{cn}是
常数
常数
数列.(填等比、等差、常数或其他没有规律)

查看答案和解析>>

同步练习册答案