精英家教网 > 高中数学 > 题目详情
11.已知圆x2+y2-4x+2y-11=0的一条直径过直线x-2y-3=0被圆截得的弦的中点,则该直径所在的直线方程是(  )
A.2x+y-5=0B.x-2y=0C.2x+y-3=0D.x+2y=0

分析 求出圆的标准方程,确定圆心坐标,根据直径和直线的位置关系进行求解即可.

解答 解:圆的标准方程为(x-2)2+(y+1)2=16,则圆心坐标为(2,-1),
∵圆的一条直径过直线x-2y-3=0被圆截得的弦的中点,
∴直径和直线x-2y-3=0垂直,则直径对应直线的斜率为-2,
则直径所在的直线方程为y+1=-2(x-2),即2x+y-3=0,
故选:C

点评 本题主要考查直线方程的求解,根据直线和圆的位置关系得到直径和直线垂直是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若直线y=a与函数y=|$\frac{lnx+1}{{x}^{3}}$|的图象恰有3个不同的交点,则实数a的取值范围为(  )
A.{$\frac{{e}^{2}}{3}$}B.(0,$\frac{{e}^{2}}{3}$)C.($\frac{{e}^{2}}{3}$,e)D.($\frac{1}{e}$,1)∪{$\frac{{e}^{2}}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{4}$π$\frac{7π}{4}$$\frac{5π}{2}$$\frac{13π}{4}$
Asin(ωx+φ)030-30
(Ⅰ)请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数f(x)的解析式;
(Ⅱ)将y=f(x)图象上所有点的横坐标缩短为原来的$\frac{1}{3}$,再将所得图象向左平移$\frac{π}{4}$个单位,得到y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知等比数列{an}中,a6=2,公比q>0,则log2a1+log2a2+log2a3+…+log2a11=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下面命题:①{1,2,3,4}是由四个元素组成的集合;②集合{0}表示仅有一个数“0”组成的集合;③集合{1,2,3}与{3,1,2}是同一个集合;④集合{小于1的正有理数}是一个有限集,其中正确的是(  )
A.①,②,③B.②,③,④C.③,④D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设命题p:$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$是三个非零向量;命题q:{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}为空间的一个基底,则命题p是命题q的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,定点A和B都在平面α内,顶点P∉α,PB⊥α,C是α内异于A和B的动点,且PC⊥AC,则BC与AC的位置关系是AC⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0)
(1)若f(x+θ)是周期为2π的偶函数.求ω及θ值;
(2)在(1)的条件下求函数f(x)在[-$\frac{π}{2}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A1,A2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴的两个端点,P1,P2是垂直于x轴的直线与此椭圆的两个交点,M为直线A1P1与A2P2的交点,求证:点M的轨迹方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1.

查看答案和解析>>

同步练习册答案