精英家教网 > 高中数学 > 题目详情

已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,x-2y≥0},若向区域Ω上随机投一点P,则点P落入区域A的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:根据线性规划的知识画出Ω={(x,y)|x+y≤6,x≥0,y≥0}与A={(x,y)|x≤4,y≥0,x-2y≥0}表示的区域,利用面积之比求出答案即可.
解答:解:由题意可得:Ω={(x,y)|x+y≤6,x≥0,y≥0}表示的区域是图中的三角形AOB,
易得区域的面积S△AOB=18,
A={(x,y)|x≤4,y≥0,x-2y≥0}表示的区域为图中的阴影部分,
区域的面积S阴影=4,
所以点P落入区域A的概率为
故选A.
点评:解决此类问题的关键是熟练掌握几何概率模型的公式,并且正确的画出两个集合表示的区域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若集合A∩B≠φ,则实数a的取值范围是(  )
A、[-1,3]
B、[-1-
2
2
]
C、[-3,1]
D、[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={(x,y)|
yx2
=1},B={(x,y)|x2-y=0},C={(0,0),(1,1),(-1,0)},则(A∪B)∩C
{(0,0),(1,1)}
{(0,0),(1,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)已知正实数x,y满足等式x+y+8=xy,若对任意满足条件的x,y,都有不等式(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围是
(-∞,
65
8
]
(-∞,
65
8
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y满足
1
x
+
2
y
=1
,则x+2y的最小值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(x,y)在映射f:A→B作用下的像是(x+y,x-y),x∈R,y∈R,则点(3,1)的原像是
 

查看答案和解析>>

同步练习册答案