精英家教网 > 高中数学 > 题目详情
已知函数f(x)=logax(a>0且a≠1),若数列2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差数列.

(1)求数列{an}的通项an

(2)若0<a<1,求数列{an}的前n项和Sn

(3)若a=2,令bn=an·f(an),对任意n∈N*,都有bn>f-1(t),求实数t的取值范围.

解:(1)2n+4=2+(n+2-1)d,∴d=2.

∴f(an)=2+(n+1-1)·2=2n+2.

∴an=a2n+2.                                                             

(2)Sn=.                                                    

(3)bn=an·f(an)=(2n+2)a2n+2=(2n+2)·22n+2=(n+1)·22n+3·4>1,∴bn+1>bn.∴{bn}为递增数列.∴bn中最小项为b1=2·25=26,f-1(t)=2t.

∴26>2t.∴t<6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函数y=g(x)-x在[0,1]上的最小值;

(2)当a≥时,函数t(x)=f(x)+g(x)的图像记为曲线C,曲线C在点(0,1)处的切线为l,是否存在a使l与曲线C有且仅有一个公共点?若存在,求出所有a的值;否则,说明理由.

(3)当x≥0时,g(x)≥-f(x)+恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省福州市高三上学期期末质量检测文科数学试卷(解析版) 题型:选择题

已知函数的图像在点A(l,f(1))处的切线l与直线x3y20垂直,若数列的前n项和为,则S2013的值为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013届浙江省、兰溪一中高二下期中理科数学试卷(解析版) 题型:解答题

(1)已知函数f(x)=x-ax+(a-1)。讨论函数的单调性;       

(2).已知函数f (x)=lnxg(x)=ex.设直线l为函数 yf (x) 的图象上一点A(x0f (x0))处的切线.问在区间(1,+∞)上是否存在x0,使得直线l与曲线y=g(x)也相切.若存在,这样的x0有几个?,若没有,则说明理由。

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学导数专项训练(河北) 题型:解答题

已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.

(1)求a的值和切线l的方程;

(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围

 

查看答案和解析>>

科目:高中数学 来源:浙江省杭州十四中2011-2012学年高三2月月考试题-数学(理) 题型:解答题

 

    已知函数f x)=lnxgx)=ex

    (I)若函数φ x) = f x)-,求函数φ x)的单调区间;

    (Ⅱ)设直线l为函数 yf x) 的图象上一点Ax0f x0))处的切线.证明:在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=gx)相切.

    注:e为自然对数的底数.

 

 

 

查看答案和解析>>

同步练习册答案