精英家教网 > 高中数学 > 题目详情
8.函数y=2$\sqrt{x}$sin$\frac{x}{2}$cos$\frac{x}{2}$的导数是$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.

分析 先将函数化简为y=$\sqrt{x}$sinx,再利用导数运算公式得出导数.

解答 解:y=2$\sqrt{x}$sin$\frac{x}{2}$cosx=$\sqrt{x}$sinx,
∴y′=$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.
故答案为$\frac{1}{2\sqrt{x}}$sinx+$\sqrt{x}$cosx.

点评 本题考查了三角函数化简及导数运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知正四面体棱长为a,求正四面体内切球体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正六棱台的上、下底面边长分别为2、8,侧棱长等于9,求这个棱台的高和斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过双曲线:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F作圆O:x2+y2=a2的两条切线,记切点分别为A,B,双曲线的一条渐近线与圆O在第一象限的交点为C,若∠ACB=60°,则双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知平面内A,B两点的坐标分别为(2,2),(0,-2),O为坐标原点,动点P满足|$\overrightarrow{BP}$|=1,则|$\overrightarrow{OA}$+$\overrightarrow{OP}$|的取值范围为(  )
A.(1,3)B.[1,3]C.(1,9)D.[1,9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在三棱锥P-ABC中,PB⊥地面ABC,∠BCA=90°,E,M分别为PC,AB的中点,点F在PA上,且AF=2FP.
(1)求证:AC⊥平面PBC;
(2)求证:CM∥平面BEF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设 P点在圆x2+(y-2)2=1上移动,点Q在椭圆$\frac{x^2}{9}+{y^2}=1$上移动,则|PQ|的最大值是1+$\frac{3\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知如图(1)的图象对应的函数为y=f(x),给出①y=f(|x|);②y=|f(x)|-a;③y=-f(|x|);④y=f(-|x|).⑤y=|f(|x|)|-a,则如图(2)的图象对应的函数可能是五个式子中的(  )
A.B.②④C.①②D.②③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=loga(x+b)的大致图象如图,其中a,b为常数,则函数g(x)=a-x+b的大致图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案