精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,EF分别是ABPC的中点,PAAD.

求证:(1)CD⊥PD(2)EF⊥平面PCD.

【答案】1)见解析;(2)见解析.

【解析】

试题1)证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高,中线和顶角的角平分线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形等等; (2)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.

试题解析:(1)∵PA⊥底面ABCD平面ABCD

∴CD⊥PA.

又矩形ABCD中,CD⊥AD

∵AD∩PAA平面PAD平面PAD

∴CD⊥平面PAD

平面PAD∴CD⊥PD.

(2)PD的中点G,连结AGFG.∵GF分别是PDPC的中点,

四边形AEFG是平行四边形,

∴AG∥EF.

∵PAADGPD的中点,

∴AG⊥PD∴EF⊥PD

∵CD⊥平面PADAG平面PAD.

∴CD⊥AG.∴EF⊥CD.

∵PD∩CDD平面PCDCD平面PCD

∴EF⊥平面PCD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一个函数的是(   ).

A.y=x+1y=B.y=x0y=C.f(x)=(x-1)2g(x)=(x+1)2D.f(x)=g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分) 从3名男生和名女生中任选2人参加比赛。

①求所选2人都是男生的概率;

②求所选2人恰有1名女生的概率;

③求所选2人中至少有1名女生的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是实数,

1)若函数为奇函数,求的值;

2)试用定义证明:对于任意上为单调递增函数;

3)若函数为奇函数,且不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数R).

1)求函数R上的最小值;

2)若不等式上恒成立,求的取值范围;

3)若方程上有四个不相等的实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全集U=R,若集合A={x|2≤x9}B={x|1x≤6}

1)求(CRA∪B

2)若集合C={x|ax≤2a+7},且AC,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某体育用品商场经营一批进价为40元的运动服,经市场调查发现销售量y(件)与销售单价x(元)符合一次函数模型,且销售单价为60元时,销量是600件;当销售单价为64元时,销量是560.

(1)写出销售量y(件)与销售单价x()之间的函数关系式

(2)试求销售利润z(元)与销售单价x()之间的函数关系式;

(3)(1)(2)条件下,当销售单价为多少元时,商场能获得最大利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线 的极坐标方程为:.

(I)若曲线,参数方程为:(为参数),求曲线的直角坐标方程和曲线的普通方程

(Ⅱ)若曲线,参数方程为 (为参数),,且曲线,与曲线交点分别为,求的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的极大值点,求的值;

2)若上只有一个零点,求的取值范围.

查看答案和解析>>

同步练习册答案